Journal of National Fisheries University

Back to Top

We investigated the oxygen and acid–base status of the noble scallop Mimachlamys nobilis during air exposure for 24 h. The hemolymph of noble scallop was collected from the adductor muscle, and O_2 partial pressure (Po_2), pH, CO_2 partial pressure (Pco_2), and bicarbonate ion concentration ([HCO_3^–]) were examined during air exposure. Hemolymph Po_2 decreased from 69.5 torr (mean value) to 46.3 torr during air exposure for 6 h, and reached to 19.0 torr after 24 h. The hemolymph Po_2 of air-exposed noble scallops decreased gradually and caused progressive hypoxemia by hypoventilation of the ctenidium. Air-exposed noble scallops showed a reduction in pH and elevation of Pco_2 and [HCO_3^–] of the hemolymph. In air-exposed noble scallops, the hemolymph pH decreased from 7.460 to 7.045 at 6 h and to 6.348 at 24 h. The hemolymph Pco_2 increased from 1.30 torr to 5.05 torr at 6 h and to 56.6 torr at 24 h during air exposure. The [HCO_3^–] increased from 1.26 mM/L to 1.88 mM/L at 6 h and to 4.19 mM/L at 24 h. N32From these results, in the first 6 h of air exposure, noble scallops mainly underwent respiratory acidosis by excess accumulation of CO_2 due to hypoventilation. Meanwhile, after 24 h of air exposure, noble scallops showed mainly metabolic acidosis partially compensated by mobilized [HCO_3^–] from the shell.
PP. 69 - 77
In the fishery industry, fishing nets tend to be in the water for a long time. Therefore, there is a possibility that the fishing nets will be broken by marine animals or “Kyucho”; it stands for the violent currents caused by tides or typhoons. It is necessary to repair fishing nets as soon as possible for preventing fishes from escaping to outside of the fishing net. However, a great deal of labor is required to lift and repair fishing nets. In addition, high water pressure and low water temperature may make it difficult for divers to work underwater. Therefore, underwater robot is useful to work instead of divers under such severe situations. The author suggests development of the underwater ROV (Remotely Operated Vehicle) type robot that can move on fishing net with magnet tires and repair the net using manipulators. This paper introduces the development and performance evaluation of the underwater robot using magnetic mobile mechanism.
PP. 79 - 89
In this research, aiming at efficient cooling of the locally concentrated heating part of the electronic element, a new concentric circular microchannel plate that can efficiently cool the CPU is designed in consideration of the heat generation characteristics of the CPU. Then, we conducted an experiment on heat transfer when water was used as the refrigerant for this new microchannel plate, and grasped the basic heat transfer characteristics. Furthermore, by comparing the results with the straight microchannel plate having a simple structure, the heat transfer promotion of the concentric microchannel plate was examined. By using a concentric microchannel plate, the temperature at the center of the heater can be maintained at about 25℃, and even when compared with a straight microchannel plate, the temperature rise can be suppressed by about 8 to 23℃. The heat transfer coefficient of the concentric circular microchannel plate is 6 to 8 kW/m^2 K, which is almost constant, and about four times higher than the heat transfer coefficient of the straight microchannel plate at the same heat quantity and the same flow rate. In addition, the research results were compared with the previously proposed experimental correlation equation for single phase forced convection laminar heat transfer of straight microchannnels.
PP. 91 - 100
Learners of thermodynamics learn a basic thermodynamic state quantity “entropy” which is challenging to understand owing to multiple reasons. First, entropy is explained using multiple defining equations; intuitively understanding the meaning from the equations can be difficult. Second, entropy is often explained in terms of “clutter” and “disorder” of energy; however, the correspondence between these concepts and the defining equation is not obtained intuitively. Therefore, in this study, we considered a virtual lattice space in which gas molecules are arranged and developed a model that enables intuitive understanding and quantitative calculations using defining equations. Specifically, the model was implemented in spreadsheet software with 100 gas molecules in a virtual space of 100 lattices. The model showed that even such a simple model can define thermodynamic quantities and quantify the number of cases Win Boltzmann’s equation from the viewpoint of the arrangement of molecules in lattice space. This is a tool that can calculate and quantitatively examine all entropy from multiple entropy-defining equations. This calculation sheet shows that the calculated values of entropy by the Sackur–Tetrode equation and Boltzmann’s equation are almost the same. Furthermore, the entropy difference calculated using the thermodynamic defining equation dS = dQ/T was also consistent with the values by other equations. Therefore, the model can specifically calculate the values of various entropy-defining equations.
PP. 101 - 113