コンテンツメニュー
Creators : Yoshida Hiroshi Publishers : National Fisheries University
In this research, aiming at efficient cooling of the locally concentrated heating part of the electronic element, a new concentric circular microchannel plate that can efficiently cool the CPU is designed in consideration of the heat generation characteristics of the CPU. Then, we conducted an experiment on heat transfer when water was used as the refrigerant for this new microchannel plate, and grasped the basic heat transfer characteristics. Furthermore, by comparing the results with the straight microchannel plate having a simple structure, the heat transfer promotion of the concentric microchannel plate was examined. By using a concentric microchannel plate, the temperature at the center of the heater can be maintained at about 25℃, and even when compared with a straight microchannel plate, the temperature rise can be suppressed by about 8 to 23℃. The heat transfer coefficient of the concentric circular microchannel plate is 6 to 8 kW/m^2 K, which is almost constant, and about four times higher than the heat transfer coefficient of the straight microchannel plate at the same heat quantity and the same flow rate. In addition, the research results were compared with the previously proposed experimental correlation equation for single phase forced convection laminar heat transfer of straight microchannnels.
Creators : Ohara Junichi Ishida Masateru Publishers : National Fisheries University
水産大学校研究報告 Volume 52 Issue 1 pp. 11 - 29
published_at 2004-01
Creators : Suda Yusuke Inoue Takashi Nakamura Masanori Masuda Naohisa Doi Hiroyuki Murai Takeshi Publishers : 水産大学校
水産大学校研究報告 Volume 51 Issue 3 pp. 73 - 78
published_at 2003-03
Creators : Kondo Masakazu Tomonaga Susumu Takahashi Yukinori Publishers : 水産大学校
Creators : Chiba Takuo Publishers : National Fisheries University
Creators : Nakano Michinori Publishers : National Fisheries University
水産大学校研究報告 Volume 47 Issue 3 pp. 103 - 111
published_at 1999-02
Creators : Morimoto Eiji Osaki Eiki Wada Kenzo Itoi Shigeru Egawa Naoki Asif Savanovic Publishers : 水産大学校
水産大学校研究報告 Volume 47 Issue 4 pp. 253 - 264
published_at 1999-03
Creators : Koga Motoaki Publishers : 水産大学校
水産大学校研究報告 Volume 46 Issue 3 pp. 137 - 144
published_at 1998-01
Creators : Greg Stinnett Publishers : 水産大学校
水産大学校研究報告 Volume 46 Issue 3 pp. 145 - 154
published_at 1998-01
Creators : Koga Motoaki Publishers : 水産大学校
水産大学校研究報告 Volume 46 Issue 4 pp. 197 - 201
published_at 1998-03
Creators : Mizukami Yuzuru Okauchi Masanori Kobayashi Masahiro Kito Hitoshi Publishers : 水産大学校
水産大学校研究報告 Volume 44 Issue 1 pp. 9 - 19
published_at 1995-12
Creators : Jorge Flores Manuel Rodriguez Shimizu Makoto Machii Tadanobu Publishers : 水産大学校
水産大学校研究報告 Volume 42 Issue 1 pp. 1 - 71
published_at 1993-12
Creators : Itami Toshiaki Publishers : 水産大学校
水産大学校研究報告 Volume 42 Issue 2 pp. 81 - 84
published_at 1994-01
Creators : Suzuki Nobutaka Kanamori Norio Mashiko Shinro Takasu Yasusuke Publishers : 水産大学校
水産大学校研究報告 Volume 42 Issue 2 pp. 85 - 90
published_at 1994-01
Creators : Suetsuna Kunio Nagatomo Kota Maekawa Keisei Nakajima Sigeru Shiba Satoko Chen Jing rong Yamauchi Fumio Publishers : 水産大学校
水産大学校研究報告 Volume 42 Issue 4 pp. 157 - 162
published_at 1994-03
Creators : Tanoue Yasuhiro Terada Akira Taniguchi Hiroshige Morishita Shin-ichi Publishers : 水産大学校
水産大学校研究報告 Volume 42 Issue 4 pp. 185 - 193
published_at 1994-03
Creators : Mitsutani Atsushi Uchida Aritsune Ishida Yuzaburo Publishers : 水産大学校
Learners of thermodynamics learn a basic thermodynamic state quantity “entropy” which is challenging to understand owing to multiple reasons. First, entropy is explained using multiple defining equations; intuitively understanding the meaning from the equations can be difficult. Second, entropy is often explained in terms of “clutter” and “disorder” of energy; however, the correspondence between these concepts and the defining equation is not obtained intuitively. Therefore, in this study, we considered a virtual lattice space in which gas molecules are arranged and developed a model that enables intuitive understanding and quantitative calculations using defining equations. Specifically, the model was implemented in spreadsheet software with 100 gas molecules in a virtual space of 100 lattices. The model showed that even such a simple model can define thermodynamic quantities and quantify the number of cases Win Boltzmann’s equation from the viewpoint of the arrangement of molecules in lattice space. This is a tool that can calculate and quantitatively examine all entropy from multiple entropy-defining equations. This calculation sheet shows that the calculated values of entropy by the Sackur–Tetrode equation and Boltzmann’s equation are almost the same. Furthermore, the entropy difference calculated using the thermodynamic defining equation dS = dQ/T was also consistent with the values by other equations. Therefore, the model can specifically calculate the values of various entropy-defining equations.
Creators : Ishida Takeshi Ohara Junichi Publishers : National Fisheries University
Creators : Ogata Eizi Publishers : National Fisheries University