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Abstract: In this paper, we give double inequalities derived from the arithmetic-geometric-harmonic
mean inequalities with power exponential functions.

Keywords: mean inequality, monotonically increasing function, monotonically decreasing function.

1. Introduction
Studies of inequalities are active areas in the mathematical analysis. Arithmetic-geometric-harmonic
mean inequality of two variable numbers is known as that; for a > 0 and b > 0, the inequality

2ab a+b
(0.1) a+b < Vab < 2
holds. Recently, Chen et al. [1, 2, 3, 4, 5] gave the double inequalities with power exponential
functions in which the base of the left hand side is equal to the base of the right hand side. In this
paper, we give double inequalities which have the above feature. In Theorems 1 and 2, we establish
the reversed Arithmetic-geometric-harmonic mean inequality of two variable numbers with power
exponential functions as follows.

Theorem 1. For 0 < b <a <1, we have

9(b) 9(b)
<a—|—b> S\/%§<2ab> ’

2

where the functions are

6(0) = 2In 1(1121’)

Theorem 2. For 1 <b < a, we have

0(a) J(a)
<a+b> S\/%§<2ab> ,

2 a-+b

where the functions are
Ina Ina

—— and VY(a) = ——F—.
2ln (%) 2ln (%)

In Theorems 1 and 2, we give the double inequality for the case of (I) 0 <b<a <1, (II)1 <b <a.
Next, in Theorems 3 and 4, we establish the double inequalities for the case of (I) 1 < a < 2 and
0<b< 3, (II)a>2and 0<b< 1 which are derived from the left hand side of the inequality (0.1)
as follows.

0(a) =

Theorem 3. If1<a<2and0<b< %, then we have

<2ab>9§\/£§<2ab>ﬁ,

a+b a-+b
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where the constants
In2

" 2 (3)

0 = 0.854756 and U =0

are the best possible.
Theorem 4. Ifa>2 and 0 < b < L then we have

< 2ab >9 < Vil < ( 2ab )W

a+b a+b

where the constant 0 = % 1s the best possible and the function

In (&
o(a) = &) _
21n ( “1)
aty
From Theorem 1 and 2, we obtain double inequalities as follows.
Corollary 5. Fora>1 and b > 1, we have
0 9
a + b S \/@ S a + b ’
2 2
where the constants 6 = % and ¥ =1 are the best possible.
Corollary 6. For0<a <1 and0<b<1, we have

<2ab>9§m§<2ab>0’

a+b a+b

where the constants 0 =1 and ¥ = % are the best possible.

2. Proof of main results
2.1. Proof of Theorem 1 and Theorem 2

We show four lemmas to prove Theorem 1 and Theorem 2.
Lemma 7. For 0 <b<a <1, we have

Inb In vab
2 (5) T I (437)
Proof of Lemma 7. For fixed b, let us denote

f(a)

B Invab
I (%0)
Then we have derivative

aln (‘ITH’) +bln (“TH’) —2aln (\/@)

2a(a+b) (In (452))”
and by the right hand side of the inequality (0.1),

aln (a;b) +bln <a42rb> —2aln (\/CE)
> aln (\/CE) +bln (\/%) — 2aln (\/CE)
=—(a—"b)In (\/%)

>0.

f'(a) =
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From f’(a) > 0 for b < a <1, f(a) is strictly increasing for b < a < 1. Hence, we can get

Inb

f(a)éf(l):m-
2

Lemma 8. For1 <b < a, we have

Invab S Ina
In (%) ~ 2In (%)

Proof of Lemma 8. For fixed a, let us denote

Then we have derivative
aln (GTH’) + bln (“TH’) — 2bln <\/%)
2b(a +b) (In (%£2))”

and by the right hand side of the inequality (0.1),
aln (‘“Lb> + bln (a - b) ~2bn (Vad)
2 2
> aln (Vab) +bln (Vab) —2bln (Vab)
= (a—b)ln (\/@)

>0.

f'(b) =

From f/(b) > 0 for 1 < b < a, f(b) is strictly increasing for 1 < b < a. Hence, we can get

Ina

f(b)Zf(l):m-
2

Lemma 9. For 0 <b<a <1, we have

In Vab - Inb
2ab\ — 2 \
In (a%b) 2In (b+1)

Proof of Lemma 9. For fixed b, let us denote
In \/@

(3

fla) =

Then we have derivative

f’(a) _ aln (%) + bln (%) — 2bln (\/@)

2a(a+b) (ln (%))2
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and by the left hand side of the inequality (0.1),

an (2N Lpm (290 opm (m)
b b

a a

< aln <\/%) + bln (M) — 2bln (\/%)
= (a—b)ln (@)

<0.

From f'(a) < 0 for b < a <1, f(a) is strictly decreasing for b < a < 1. Hence, we can get

f(a)Zf(l)Imh(jb%)-

b+1

Lemma 10. For 1 <b < a, we have

Ina S Invab
2ln (f—_ﬁ‘l) T In (%) .

Proof of Lemma 10. For fixed a, let us denote

B Invab
7o) = In (2ab) '

a+b

Then we have derivative
~2aln (Vab) +aln (24 + bin (22)
2b(a +b) (ln (%))2

and by the left hand side of the inequality (0.1),

aln <azj—bb> + bln <azj—bb> — 2aln (\/@)
< aln (M) + bln (M) — 2aln (@)
= —(a—"b)ln (@)

<0.

f'(b) =

From f/(b) <0 for 1 <b < a, f(b) is strictly decreasing for 1 < b < a. Hence, we can get

Ina

f(b)éf(l):mn(%)-

a+1

Proof of Theorem 1. By lemma 7 and 9 for 0 < b < a <1, we have

Inb b Inb 2ab
7nb+1 In <a+ )gln\/%g L (a )
2In (3 2 2In ( 2 ) atb

b+1

The proof of Theorem 1 is complete.
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Proof of Theorem 2. By lemma 8 and 10 for 1 < b < a, we have

(wfim ) (39) == (G ) (25)

2In (—
The proof of Theorem 2 is complete. (Il

2.2 Proof of Theorem 3 and Theorem 4

Proof of Theorem 3. For fixed b, let us denote

_ In vab
f(a)—ih[1 (@) :

a+b

then we have derivative

fi(a)

2a(a +b) <ln (%))2 ’

where fi(a) = aln (%) +bln (%) —bln (ab). By fi(a) =1In (31%) < 0, fi(a) is strictly decreasing

for a. From the left hand side of the inequality (0.1), we have
fi(a) < f1(1)
1 b
< —-Inb+—-Inb—>blnbd
2 2

1 —
= lenb<0

f'(a) =

for 0 < b < % Thus, f/(a) < 0 for a and f(a) is strictly decreasing for a. Hence, we can get

f(2) < fla) < f(1)

for 1 < a < 2. Here, we set

The derivative of g(b) gives
91(b)

b(b+2) (In (W))

_|_
where g1(b) = —21In (20) + bln (m> + 2In (b+2) By ¢j(b) = In (bi%) < 0, g1(b) is strictly
decreasing for 0 < b < 3. From g1 (b) < lim, o+ g1(b) = 0 and ¢'(b) < 0 for 0 < b < 3, g(b) is strictly
decreasing for 0 < b < % Hence, we can get

g(b) > g (;) =0

for 0 < b < £. The derivative of h(b) gives

g'(b) =
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where hi(b) = —Inb+ bln (bi—bl) +1In <b%r—bl>. By hj(b) = In (1%;) < 0, hi(b) is strictly decreasing

for 0 <b < &. From h1(b) > hi(3) = —31In (3) + In2 = 0.0849495 and h/(b) > 0 for 0 < b < 3, h(b)
is strictly increasing for 0 < b < % Hence, we can get

1 In2
h(b) < h () =
2 21n (%)
In vab < In2
In (%) ~ 2In (%)

forl<a<2and 0<b< % The proof of Theorem 3 is complete. U
Proof of Theorem 4. For fixed b, let us denote

fla) =

for 0 < b < % Therefore, we obtain

0<

Invab

2ab )
In (f;b)

Since f(a) is strictly decreasing for a, we have f(a) < f(2). Here, we set

In (2b)
g) =f(2) = —F—~.
2In (bib2>

Since ¢(b) is strictly decreasing for 0 < b < %, we can get
1
b li b) ==
g(b) < lim g(b) =
forO<b§%. We set
Invab
2ab )
111 <m)
f1(b)
2
2b(a + b) (m (3%;)))

where f1(b) = aln (%) +bln (%) —aln (ab). By f{(b) =In <3L+%) < 0, f1(b) is strictly decreasing
for 0 < b < i. From f1(b) < limy o+ f1(b) = —aln (%) < 0 for a > 2, #'(b) < 0 and h(b) is strictly

decreasing for 0 < b < % Hence, we can get

h(b) =

then the derivative of h(b) is

K (b) =

for 0 < b < % Therefore, we obtain
In (%) < In+vab

21n <ai%) ~In (%)

fora>2and 0 <b < % The proof of Theorem 4 is complete. O




Double inequalities derived from the arithmetic-geometric-harmonic mean inequalities with power exponential functions (Yusuke Nishizawa) 15

2.3 Proof of Corollary 5 and Corollary 6

Proof of Corollary 5. We assume 1 < b < a then, let us denote

B ln\/%
I (%9

f(b)

for fixed a. By Lemma 8, we have

Invab Ina
O e

Here, the derivative of g(a) gives

where

and we have

h'(a) = In <a—;—1> —Ina

From 0 < %1 < 1, h/(a) < 0 and h(a) is strictly decreasing for a > 1. By h(1) = 0, we have h(a) < 0
and ¢'(a) < 0 for a > 1. Therefore, g(a) is strictly decreasing for a > 1 and g(a) > lim, o0 g(a) = 3.
By Lemma 8, f(b) is strictly increasing for 1 < b < a and we obtain f(b) < f(a) = 1. Thus, we obtain

1 In vab
3 < ey <1
In (%37)
where the constants % and 1 are the best possible. The proof of Corollary 5 is complete. [l

Proof of Corollary 6. We assume 0 < b < a < 1 then, let us denote

Invab
fla) = —7—~
hl (m)
for fixed b. By Lemma 9, we have
In Vab Inb

where

and we have

R (b) = In <b2+b1)

From 0 < bi—bl < 1, W(b) < 0 and h(b) is strictly decreasing for 0 < b < 1. By h(1) = 0, we have

h(b) > 0 and ¢'(b) > 0 for 0 < b < 1. Therefore, g(b) is strictly increasing for 0 < b < 1 and



16 T TSGR 625 TR 2843 A

g(b) > limy_og(b) = 3. By Lemma 9, f(a) is strictly decreasing for b < a < 1 and we obtain

f(a) < f(b) = 1. Thus, we obtain
In vab <1

< 2ab\ —
a
In (a—‘rb)

1
2

where the constants % and 1 are the best possible. The proof of Corollary 6 is complete. U
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