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1. Introduction
Studies of inequalities are active areas in the mathematical analysis. Arithmetic-geometric-harmonic

mean inequality of two variable numbers is known as that; for a > 0 and b > 0, the inequality

(0.1)
2ab

a + b
≤

√
ab ≤ a + b

2
holds. Recently, Chen et al. [1, 2, 3, 4, 5] gave the double inequalities with power exponential
functions in which the base of the left hand side is equal to the base of the right hand side. In this
paper, we give double inequalities which have the above feature. In Theorems 1 and 2, we establish
the reversed Arithmetic-geometric-harmonic mean inequality of two variable numbers with power
exponential functions as follows.

Theorem 1. For 0 < b ≤ a ≤ 1, we have
(

a + b

2

)θ(b)

≤
√

ab ≤
(

2ab

a + b

)ϑ(b)

,

where the functions are

θ(b) =
ln b

2ln
(

1+b
2

) and ϑ(b) =
ln b

2ln
(

2b
1+b

) .

Theorem 2. For 1 ≤ b ≤ a, we have
(

a + b

2

)θ(a)

≤
√

ab ≤
(

2ab

a + b

)ϑ(a)

,

where the functions are

θ(a) =
ln a

2ln
(

1+a
2

) and ϑ(a) =
ln a

2ln
(

2a
1+a

) .

In Theorems 1 and 2, we give the double inequality for the case of (I) 0 < b ≤ a ≤ 1, (II) 1 ≤ b ≤ a.
Next, in Theorems 3 and 4, we establish the double inequalities for the case of (I) 1 ≤ a < 2 and
0 < b ≤ 1

2 , (II) a ≥ 2 and 0 < b ≤ 1
2 which are derived from the left hand side of the inequality (0.1)

as follows.

Theorem 3. If 1 ≤ a < 2 and 0 < b ≤ 1
2 , then we have

(
2ab

a + b

)θ

≤
√

ab ≤
(

2ab

a + b

)ϑ

,
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where the constants
θ =

ln 2
2 ln

(
3
2

) ∼= 0.854756 and ϑ = 0

are the best possible.

Theorem 4. If a ≥ 2 and 0 < b ≤ 1
2 , then we have

(
2ab

a + b

)θ

≤
√

ab ≤
(

2ab

a + b

)ϑ(a)

,

where the constant θ = 1
2 is the best possible and the function

ϑ(a) =
ln

(
a
2

)

2 ln
(

a
a+ 1

2

) .

From Theorem 1 and 2, we obtain double inequalities as follows.

Corollary 5. For a ≥ 1 and b ≥ 1, we have
(

a + b

2

)θ

≤
√

ab ≤
(

a + b

2

)ϑ

,

where the constants θ = 1
2 and ϑ = 1 are the best possible.

Corollary 6. For 0 < a ≤ 1 and 0 < b ≤ 1, we have
(

2ab

a + b

)θ

≤
√

ab ≤
(

2ab

a + b

)ϑ

,

where the constants θ = 1 and ϑ = 1
2 are the best possible.

2. Proof of main results

2.1. Proof of Theorem 1 and Theorem 2

We show four lemmas to prove Theorem 1 and Theorem 2.

Lemma 7. For 0 < b ≤ a ≤ 1, we have

ln b

2ln
(

b+1
2

) ≥ ln
√

ab

ln
(

a+b
2

) .

Proof of Lemma 7. For fixed b, let us denote

f(a) =
ln
√

ab

ln
(

a+b
2

) .

Then we have derivative

f ′(a) =
a ln

(
a+b
2

)
+ b ln

(
a+b
2

)
− 2a ln

(√
ab

)

2a(a + b)
(
ln

(
a+b
2

))2

and by the right hand side of the inequality (0.1),

a ln
(

a + b

2

)
+ b ln

(
a + b

2

)
− 2a ln

(√
ab

)

≥ a ln
(√

ab
)

+ b ln
(√

ab
)
− 2a ln

(√
ab

)

= −(a − b) ln
(√

ab
)

≥ 0 .
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From f ′(a) > 0 for b < a < 1, f(a) is strictly increasing for b < a < 1. Hence, we can get

f(a) ≤ f(1) =
ln b

2ln
(

b+1
2

) .

�

Lemma 8. For 1 ≤ b ≤ a, we have

ln
√

ab

ln
(

a+b
2

) ≥ ln a

2ln
(

a+1
2

) .

Proof of Lemma 8. For fixed a, let us denote

f(b) =
ln
√

ab

ln
(

a+b
2

) .

Then we have derivative

f ′(b) =
aln

(
a+b
2

)
+ bln

(
a+b
2

)
− 2bln

(√
ab

)

2b(a + b)
(
ln

(
a+b
2

))2

and by the right hand side of the inequality (0.1),

aln
(

a + b

2

)
+ bln

(
a + b

2

)
− 2bln

(√
ab

)

≥ aln
(√

ab
)

+ bln
(√

ab
)
− 2bln

(√
ab

)

= (a − b)ln
(√

ab
)

≥ 0 .

From f ′(b) > 0 for 1 < b < a, f(b) is strictly increasing for 1 < b < a. Hence, we can get

f(b) ≥ f(1) =
ln a

2ln
(

a+1
2

) .

�

Lemma 9. For 0 < b ≤ a ≤ 1, we have

ln
√

ab

ln
(

2ab
a+b

) ≥ ln b

2ln
(

2b
b+1

) .

Proof of Lemma 9. For fixed b, let us denote

f(a) =
ln
√

ab

ln
(

2ab
a+b

) .

Then we have derivative

f ′(a) =
aln

(
2ab
a+b

)
+ bln

(
2ab
a+b

)
− 2bln

(√
ab

)

2a(a + b)
(
ln

(
2ab
a+b

))2
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and by the left hand side of the inequality (0.1),

aln
(

2ab

a + b

)
+ bln

(
2ab

a + b

)
− 2bln

(√
ab

)

≤ aln
(√

ab
)

+ bln
(√

ab
)
− 2bln

(√
ab

)

= (a − b)ln
(√

ab
)

≤ 0 .

From f ′(a) < 0 for b < a < 1, f(a) is strictly decreasing for b < a < 1. Hence, we can get

f(a) ≥ f(1) =
ln b

2ln
(

2b
b+1

) .

�

Lemma 10. For 1 ≤ b ≤ a, we have

ln a

2ln
(

2a
a+1

) ≥ ln
√

ab

ln
(

2ab
a+b

) .

Proof of Lemma 10. For fixed a, let us denote

f(b) =
ln
√

ab

ln
(

2ab
a+b

) .

Then we have derivative

f ′(b) =
−2aln

(√
ab

)
+ aln

(
2ab
a+b

)
+ bln

(
2ab
a+b

)

2b(a + b)
(
ln

(
2ab
a+b

))2

and by the left hand side of the inequality (0.1),

aln
(

2ab

a + b

)
+ bln

(
2ab

a + b

)
− 2aln

(√
ab

)

≤ aln
(√

ab
)

+ bln
(√

ab
)
− 2aln

(√
ab

)

= −(a − b)ln
(√

ab
)

≤ 0 .

From f ′(b) < 0 for 1 < b < a, f(b) is strictly decreasing for 1 < b < a. Hence, we can get

f(b) ≤ f(1) =
ln a

2ln
(

2a
a+1

) .

�

Proof of Theorem 1. By lemma 7 and 9 for 0 < b ≤ a ≤ 1, we have
(

ln b

2ln
(

b+1
2

)
)

ln
(

a + b

2

)
≤ ln

√
ab ≤



 ln b

2ln
(

2b
b+1

)



 ln
(

2ab

a + b

)
.

The proof of Theorem 1 is complete. �
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Proof of Theorem 2. By lemma 8 and 10 for 1 ≤ b ≤ a, we have
(

ln a

2ln
(

a+1
2

)
)

ln
(

a + b

2

)
≤ ln

√
ab ≤



 ln a

2ln
(

2a
a+1

)



 ln
(

2ab

a + b

)
.

The proof of Theorem 2 is complete. �

2.2 Proof of Theorem 3 and Theorem 4

Proof of Theorem 3. For fixed b, let us denote

f(a) =
ln
√

ab

ln
(

2ab
a+b

) ,

then we have derivative

f ′(a) =
f1(a)

2a(a + b)
(
ln

(
2ab
a+b

))2 ,

where f1(a) = a ln
(

2ab
a+b

)
+b ln

(
2ab
a+b

)
−b ln (ab). By f ′

1(a) = ln
(

2ab
a+b

)
< 0, f1(a) is strictly decreasing

for a. From the left hand side of the inequality (0.1), we have

f1(a) < f1(1)

≤ 1
2

ln b +
b

2
ln b − b ln b

=
1 − b

2
ln b < 0

for 0 < b ≤ 1
2 . Thus, f ′(a) < 0 for a and f(a) is strictly decreasing for a. Hence, we can get

f(2) < f(a) ≤ f(1)

for 1 ≤ a < 2. Here, we set

g(b) = f(2) =
ln (2b)

2 ln
(

4b
b+2

) and h(b) = f(1) =
ln b

2 ln
(

2b
1+b

) .

The derivative of g(b) gives

g′(b) =
g1(b)

2b(b + 2)
(
ln

(
4b

b+2

))2 ,

where g1(b) = −2 ln (2b) + b ln
(

4b
b+2

)
+ 2 ln

(
4b

b+2

)
. By g′1(b) = ln

(
4b

b+2

)
< 0, g1(b) is strictly

decreasing for 0 < b < 1
2 . From g1(b) < limb→0+ g1(b) = 0 and g′(b) < 0 for 0 < b < 1

2 , g(b) is strictly
decreasing for 0 < b < 1

2 . Hence, we can get

g(b) ≥ g

(
1
2

)
= 0

for 0 < b ≤ 1
2 . The derivative of h(b) gives

h′(b) =
h1(b)

2b(b + 1)
(
ln

(
2b

b+1

))2 ,
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where h1(b) = −ln b + b ln
(

2b
b+1

)
+ ln

(
2b

b+1

)
. By h′

1(b) = ln
(

2b
1+b

)
< 0, h1(b) is strictly decreasing

for 0 < b < 1
2 . From h1(b) > h1(1

2) = −3
2 ln

(
3
2

)
+ ln 2 ∼= 0.0849495 and h′(b) > 0 for 0 < b < 1

2 , h(b)
is strictly increasing for 0 < b < 1

2 . Hence, we can get

h(b) ≤ h

(
1
2

)
=

ln 2
2 ln

(
3
2

)

for 0 < b ≤ 1
2 . Therefore, we obtain

0 <
ln
√

ab

ln
(

2ab
a+b

) ≤ ln 2
2 ln

(
3
2

)

for 1 ≤ a < 2 and 0 < b ≤ 1
2 . The proof of Theorem 3 is complete. �

Proof of Theorem 4. For fixed b, let us denote

f(a) =
ln
√

ab

ln
(

2ab
a+b

) .

Since f(a) is strictly decreasing for a, we have f(a) < f(2). Here, we set

g(b) = f(2) =
ln (2b)

2 ln
(

4b
b+2

) .

Since g(b) is strictly decreasing for 0 < b < 1
2 , we can get

g(b) < lim
b→0+

g(b) =
1
2

for 0 < b ≤ 1
2 . We set

h(b) =
ln
√

ab

ln
(

2ab
a+b

) ,

then the derivative of h(b) is

h′(b) =
f1(b)

2b(a + b)
(
ln

(
2ab
a+b

))2 ,

where f1(b) = a ln
(

2ab
a+b

)
+b ln

(
2ab
a+b

)
−a ln (ab). By f ′

1(b) = ln
(

2ab
a+b

)
< 0, f1(b) is strictly decreasing

for 0 < b < 1
2 . From f1(b) < limb→0+ f1(b) = −a ln

(
a
2

)
< 0 for a > 2, h′(b) < 0 and h(b) is strictly

decreasing for 0 < b < 1
2 . Hence, we can get

h(b) ≥ h

(
1
2

)
=

ln
(

a
2

)

2 ln
(

a
a+ 1

2

)

for 0 < b ≤ 1
2 . Therefore, we obtain

ln
(

a
2

)

2 ln
(

a
a+ 1

2

) ≤ ln
√

ab

ln
(

2ab
a+b

) <
1
2

.

for a ≥ 2 and 0 < b ≤ 1
2 . The proof of Theorem 4 is complete. �
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2.3 Proof of Corollary 5 and Corollary 6

Proof of Corollary 5. We assume 1 ≤ b ≤ a then, let us denote

f(b) =
ln
√

ab

ln
(

a+b
2

)

for fixed a. By Lemma 8, we have

f(b) =
ln
√

ab

ln
(

a+b
2

) ≥ ln a

2ln
(

a+1
2

) = g(a) .

Here, the derivative of g(a) gives

g′(a) =
h(a)

2a(a + 1)
(
ln

(
a+1
2

))2 ,

where

h(a) = aln
(

a + 1
2

)
+ ln

(
a + 1

2

)
− aln a

and we have

h′(a) = ln
(

a + 1
2

)
− ln a

From 0 < a+1
2a < 1, h′(a) < 0 and h(a) is strictly decreasing for a > 1. By h(1) = 0, we have h(a) < 0

and g′(a) < 0 for a > 1. Therefore, g(a) is strictly decreasing for a > 1 and g(a) > lima→∞ g(a) = 1
2 .

By Lemma 8, f(b) is strictly increasing for 1 < b < a and we obtain f(b) ≤ f(a) = 1. Thus, we obtain

1
2

<
ln
√

ab

ln
(

a+b
2

) ≤ 1 ,

where the constants 1
2 and 1 are the best possible. The proof of Corollary 5 is complete. �

Proof of Corollary 6. We assume 0 < b ≤ a ≤ 1 then, let us denote

f(a) =
ln
√

ab

ln
(

2ab
a+b

)

for fixed b. By Lemma 9, we have

f(a) =
ln
√

ab

ln
(

2ab
a+b

) ≥ ln b

2ln
(

2b
b+1

) = g(b) .

Here, the derivative of g(b) gives

g′(b) =
h(b)

2b(b + 1)
(
ln

(
2b

b+1

))2 ,

where

h(b) = bln
(

2b

b + 1

)
+ ln

(
2b

b + 1

)
− ln b

and we have

h′(b) = ln
(

2b

b + 1

)

From 0 < 2b
b+1 < 1, h′(b) < 0 and h(b) is strictly decreasing for 0 < b < 1. By h(1) = 0, we have

h(b) > 0 and g′(b) > 0 for 0 < b < 1. Therefore, g(b) is strictly increasing for 0 < b < 1 and
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g(b) > limb→0 g(b) = 1
2 . By Lemma 9, f(a) is strictly decreasing for b < a < 1 and we obtain

f(a) ≤ f(b) = 1. Thus, we obtain
1
2

<
ln
√

ab

ln
(

2ab
a+b

) ≤ 1 ,

where the constants 1
2 and 1 are the best possible. The proof of Corollary 6 is complete. �
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