An elementary proof of some inequality derived from the function $\left(b^{x}-a^{x}\right) / x$

Abstract

In this article, we prove that the inequality $(x+\gamma)(a+b / 2)^{\gamma} / x>\left(b^{x+\gamma}-a^{x+\gamma}\right) /\left(b^{x}-a^{x}\right)$ holds for $0<\gamma<1,0<x<1$ and $0<a<b$ using by elementary method.

Keywords: inequality, monotonically decreasing function, monotonically increasing function.

1. Introduction

Qi Feng et al. [1, $2,3,4,5,6]$ studied some properties and inequalities derived from the function $\left(b^{x}-\right.$ $\left.a^{x}\right) / x$. Qi Feng et al.[3] and Z. Liu [5] proved that the inequality

$$
\begin{equation*}
\left.\frac{b^{x+\gamma}-a^{x+\gamma}}{b^{x}-a^{x}} \geq \frac{x+\gamma}{x} \quad \frac{a+b}{2}\right)^{\gamma} \tag{0.1}
\end{equation*}
$$

holds for $\gamma \geq 1, x \geq 1$ and $0<a<b$. They [3] /showed the inequality

$$
\begin{equation*}
\frac{a+b}{2} \leq \frac{1}{b-a}{ }_{a}^{b} t^{\gamma} d t=\frac{b^{1+\gamma}-a^{1+\gamma}}{(b-a)(1+\gamma)} \tag{0.2}
\end{equation*}
$$

holds for $\gamma \geq 1$ and $0<a<b$ and the inequality

$$
\begin{equation*}
\frac{x\left(b^{x+\gamma}-a^{x+\gamma}\right)}{(x+\gamma)\left(b^{x}-a^{x}\right)} \geq \frac{b^{1+\gamma}-a^{1+\gamma}}{(1+\gamma)(b-a)} \tag{0.3}
\end{equation*}
$$

holds for $x \geq 1, \gamma \geq 0$ and $0<a<b$. The above inequalities (0.2) and (0.3) are important roles to prove the inequality (0.1) in [3]. Since the inequality (0.2) does not hold for $0<\gamma<1$, they [3] can not prove that the inequality (0.1) holds for $0<\gamma<1$ or $0<x<1$.

In this shote note, we shall give a directly proof of the reversed inequality (0.1) for $0<\gamma<1$ and $0<x<1$ in an elementary method.

Main Theorem. The inequality

$$
\begin{equation*}
\left.\frac{x+\gamma}{x} \quad \frac{a+b}{2}\right)^{\gamma}>\frac{b^{x+\gamma}-a^{x+\gamma}}{b^{x}-a^{x}} \tag{0.4}
\end{equation*}
$$

holds for all $0<\gamma<1,0<x<1$ and $0<a<b$.

2. Preliminaries and proof of Main Theorem

We need the following lemmas to prove Main Theorem.
Lemma 2.1. If $\gamma>0, x \geq 0$ and $0<t<1$, then

$$
1-t^{\gamma}+\gamma t^{x+\gamma} \ln t>0 .
$$

Proof．We set

$$
f(\gamma, t, x)=1-t^{\gamma}+\gamma t^{x+\gamma} \ln t
$$

Since the partial derivative

$$
\frac{\partial}{\partial x} f(\gamma, t, x)=\gamma t^{x+\gamma}(\ln t)^{2}>0
$$

$f(\gamma, t, x)$ is strictly increasing for $x>0$ ．Thus，$f(\gamma, t, x)>f(\gamma, t, 0)$ ．Since

$$
f(\gamma, t, 0)=1-t^{\gamma}+\gamma t^{\gamma} \ln t
$$

and the partial derivative

$$
\frac{\partial}{\partial t} f(\gamma, t, 0)=\gamma^{2} t^{-1+\gamma} \ln t<0
$$

$f(\gamma, t, 0)$ is strictly decreasing for $0<t<1$ ．Since $f(\gamma, t, 0)>f(\gamma, 1,0)=0$ ，we can get $f(\gamma, t, x)>0$ for all $\gamma>0, x \geq 0$ and $0<t<1$ ．

Lemma 2．2．If $\gamma>0,0<x<1$ and $0<t<1$ ，then

$$
\frac{(x+\gamma)\left(1-t^{x}\right)}{x\left(1-t^{x+\gamma}\right)}>\frac{(1+\gamma)(1-t)}{1-t^{1+\gamma}}
$$

Proof．We set

$$
f(\gamma, t, x)=\frac{(x+\gamma)\left(1-t^{x}\right)}{x\left(1-t^{x+\gamma}\right)} .
$$

Then the partial derivative

$$
\frac{\partial}{\partial x} f(\gamma, t, x)=-\frac{g(\gamma, t, x)}{\left(1-t^{x+\gamma}\right)^{2} x^{2}},
$$

where

$$
g(\gamma, t, x)=\gamma-\gamma t^{x}-\gamma t^{x+\gamma}+\gamma t^{2 x+\gamma}+\gamma t^{x} x \ln t-\gamma t^{x+\gamma} x \ln t+t^{x} x^{2} \ln t-t^{x+\gamma} x^{2} \ln t .
$$

Then the partial derivative

$$
\frac{\partial}{\partial x} g(\gamma, t, x)=h(\gamma, t, x) t^{x} \ln t
$$

where

$$
h(\gamma, t, x)=-2 \gamma t^{\gamma}+2 \gamma t^{x+\gamma}+2 x-2 t^{\gamma} x+\gamma x \ln t-\gamma t^{\gamma} x \ln t+x^{2} \ln t-t^{\gamma} x^{2} \ln t .
$$

Then the partial derivatives

$$
\frac{\partial}{\partial x} h(\gamma, t, x)=2-2 t^{\gamma}+\gamma \ln t-\gamma t^{\gamma} \ln t+2 \gamma t^{x+\gamma} \ln t+2 x \ln t-2 t^{\gamma} x \ln t
$$

and

$$
\frac{\partial^{2}}{\partial x^{2}} h(\gamma, t, x)=2\left(1-t^{\gamma}+\gamma t^{x+\gamma} \ln t\right) \ln t
$$

Therefore, by Lemma 2.1, we have

$$
\frac{\partial^{2}}{\partial x^{2}} h(\gamma, t, x)<0
$$

for all $\gamma>0, x>0$ and $0<t<1$. Thus, $\partial h(\gamma, t, x) / \partial x$ is strictly decreasing for $x>0$. Then we have

$$
\begin{gathered}
\frac{\partial}{\partial x} h(\gamma, t, 0)>\frac{\partial}{\partial x} h(\gamma, t, x) \\
\frac{\partial}{\partial x} h(\gamma, t, 0)=2-2 t^{\gamma}+\gamma \ln t+\gamma t^{\gamma} \ln t
\end{gathered}
$$

and

$$
\frac{\partial^{2}}{\partial x \partial \gamma} h(\gamma, t, 0)=\left(1-t^{\gamma}+\gamma t^{\gamma} \ln t\right) \ln t
$$

By Lemma 2.1, we have

$$
\frac{\partial^{2}}{\partial x \partial \gamma} h(\gamma, t, 0)<0
$$

Therefore, $\partial h(\gamma, t, 0) / \partial x$ is strictly decreasing for $\gamma>0$. Since $\partial h(0, t, 0) / \partial x=0, \partial h(\gamma, t, 0) / \partial x<0$ for all $\gamma>0$ and $0<t<1$. Thus, $\partial h(\gamma, t, x) / \partial x<0$ and $h(\gamma, t, x)$ is strictly decreasing for $x>0$. Since $h(\gamma, t, 0)=0$, we have $h(\gamma, t, x)<0$ for all $\gamma>0, x>0$ and $0<t<1$. Therefore, $\partial g(\gamma, t, x) / \partial x>0$ and $g(\gamma, t, x)$ is strictly increasing for $x>0$. Since $g(\gamma, t, 0)=0$, we get $g(\gamma, t, x)>0$ and $\partial f(\gamma, t, x) / \partial x<0$. Thus, $f(\gamma, t, x)$ is strictly decreasing for $x>0$. Since $f(\gamma, t, x)>f(\gamma, t, 1)$, we completed the proof of Lemma 2.2.

Lemma2.3. If $0<\gamma<1$ and $0<t<1$, then

$$
\left.\begin{array}{l}
t<1, \text { then } \\
\frac{(1+\gamma)(1-t)}{1-t^{1+\gamma}}
\end{array} \quad \frac{1+t}{2}\right)^{\gamma}>1 .
$$

Proof. We set

$$
\left.f(\gamma, t)=\frac{(1+\gamma)(1-t)}{1-t^{1+\gamma}} \quad \frac{1+t}{2}\right) \gamma
$$

Then the partial derivative

$$
\frac{\partial}{\partial t} f(\gamma, t)=\frac{-g(\gamma, t)}{2^{\gamma}(1+t)^{1-\gamma}\left(1-t^{1+\gamma}\right)^{2}}
$$

where $g(\gamma, t)=(1+\gamma)\left(1-\gamma+t+\gamma t-t^{\gamma}-\gamma t^{\gamma}-t^{1+\gamma}+\gamma t^{1+\gamma}\right)$. Then we have the partial derivative

$$
\frac{\partial}{\partial t} g(\gamma, t)=\frac{(1+\gamma) h(\gamma, t)}{t}
$$

where $h(\gamma, t)=t-\gamma t^{\gamma}-t^{1+\gamma}+\gamma t^{1+\gamma}$. Then we have the partial derivative

$$
\frac{\partial}{\partial \gamma} h(\gamma, t)=t^{\gamma} k(\gamma, t)
$$

where $k(\gamma, t)=-1+t-\gamma \ln t-t \ln t+\gamma t \ln t$ ．Since the partial derivative

$$
\frac{\partial}{\partial \gamma} k(\gamma, t)=(-1+t) \ln t>0
$$

$k(\gamma, t)$ is strictly increasing for $0<\gamma<1$ ．Since $k(0, t)=-1+t-t \ln t<0$ and $k(1, t)=-1+t-\ln t>$ 0 ，there exists $\gamma(t)$ such that $0<\gamma(t)<1$ and $k(\gamma(t), t)=0$ ．Since $k(\gamma, t)<0$ for all $0<\gamma<\gamma(t)$ and $k(\gamma, t)>0$ for all $\gamma(t)<\gamma<1, h(\gamma, t)$ is strictly decreasing for $0<\gamma<\gamma(t)$ and $h(\gamma, t)$ is strictly increasing for $\gamma(t)<\gamma<1$ ．Since $h(0, t)=0$ and $h(1, t)=0$ ，we have $h(\gamma, t)<0$ for all $0<\gamma<1$ and $0<t<1$ ．Therefore，$\partial g(\gamma, t) / \partial t<0$ ．Thus，$g(\gamma, t)$ is strictly decreasing for $0<t<1$ ．Since $g(\gamma, 1)=0$ ，we get $g(\gamma, t)>0$ ．Hence $\partial f(\gamma, t) / \partial t<0$ and $f(\gamma, t)$ is strictly decreasing for $0<t<1$ ． Therefore，we have $f(\gamma, t)>\lim _{t \rightarrow 1} f(\gamma, t)=1$ ．
Proof of Main Theorem．We assume that $t=a / b$ ．Fhen the inequality（0．4）is equivalent to

$$
\left.\frac{(x+\gamma)\left(1-t^{x}\right)}{x\left(1-t^{x+\gamma}\right)} \quad \frac{1+t}{2}\right)^{\gamma}>1
$$

where $0<\gamma<1,0<x<1$ and $0<t<1$ ．By Lemmas 2.2 and 2．3，the proof of Main Theorem is completed．

References

［1］Guo Bai－Ni and Qi Feng：The function $\left(b^{x}-a^{x}\right) / x$ ：logarithmic convexity and applications to extended mean values，Filomat，25，no．4， 2011.
［2］Qi Feng：On a two－parameter family of nonhomogeneous mean values，Tamkang J．Math．，29，no． 2， 1998.
［3］Qi Feng and Xu Sen－Lin：The function $\left(b^{x}-a^{x}\right) / x$ ：inequalities and properties，Proc．Amer．Math． Soc．，126，no．11， 1998.
［4］Qi Feng and Xu Sen－Lin：Refinements and extensions of an inequality II，J．Math．Anal．Appl． 211，no．2， 1997.
［5］Liu Zheng：Remark on refinements and extensions of an inequality，J．Math．Anal．Appl．234， no．2， 1999.
［6］Pecaric Josip，Qi Feng，Simic Vidosava and Xu Sen－Lin：Refinements and extensions of an inequality III，J．Math．Anal．Appl．227，no．2， 1998.

