妆 称 非 線 形 要 素 (第1報)

良** 敏*·足 立 官. 檔

1. まえがき

実際の自動制御系は多かれ少なかれ非線形性を持って おり厳密に云えば、すべての自動制御系は非線形と云っ ても過言ではない、線形自動制御系の解析研究はほとん ど完成の域にたっしているが非線形自動制御系は末解決 の点が残されている.

非線形自動制御系を解析したり設計したりする方法と して一般に次の場合がある1)2).


- a. 微分方程式による方法
- b. 位相面解析法
- c. 記述関数による解析法
- d. アナログ計算機による方法
- e. 統計的方法

我々は非線形要素を含む熱系プロセスの解析を行って 来た3xiが、Cの記述関数法による解析に関連ある2つの 点について研究したので報告する.

記述関数法による解析において、記述関数の方程式上 の取扱いに不備な点がみとめられたので伝達関数の表現 に使用されるラプラス変換を用いて記述関数を定義づけ る方法をとった. すると方程式上とりあつかいがスムー ズに行われることがわかった5). 従来記述関数法は非線 形制御系の定常解を求めるために用いられてきたが、と れを拡張し,近似的に過渡応答の算定にまで応用されて 来ている.

非線形要素の解析はほとんど対称非線形要素であって 非対称非線形要素の解析はすくない.したがって種々の 対称非線形要素の記述関数表71はあるが非対称非線形要 素の表がみあたらないので計算より求めた記述関数を表 にしてあらわす.

2. 記述 関数

原理図

図1において,入力を

$$x(t) = X\sin\omega t \tag{1}$$

- 宇部工業高等専門学校電気工学教室
- 宇部工業短期大学電気教室

とすると非線形要素の出力波形は, ひずみ波形となる. このひずみ波形が周期関数であるときフリェー級数展開 による一般式は

$$y(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \sin \cdot n\omega t$$
$$+ \sum_{n=1}^{\infty} b_n \cos \cdot n\omega t$$
(2)

となる。しかし自動制御系に非線形要素が含まれている 場合について考えると系の機成要素は低域フイルター的 な特性(多次元の積分的要素のためと考えてもよい.) のものが多いから系全体の動作は主として基本波成分だ けによって支配され高調波の存在を無視しても大勢に影 響しない場合が少なくない、又定常項aoについては系 が自励振動している場合, 及び周波数応答の場合には考 える必要はないと考えられる⁵⁾.

以上のことを総合すると、出力の(2)式は基本波成分だ けとなり

$$y(t) = a_1 \sin \omega t + b_1 \cos \omega t$$
 (3)
となる。伝達関数の定義にしたがって、(1)(3)式をラプラス変換すると

$$Lx(t) = X\omega/(s^2 + \omega^2) \tag{4}$$

$$Ly(t) = a_1 \omega / (s^2 + \omega^2) + b_1 s / (s^2 + \omega^2)$$
 (5)

となり、(5)式を(4)式で除した式を N(X, S) とおくと

$$N(X, S) = Ly(t)/Lx(t) = a_1/X + b_1 s/\omega X$$
 (6)式は、 S 領域における一種の記述関数と考えられる.
周波数伝達関数は $s=j\omega$ とおいて

$$N(X, j_{\omega}) = a_1/X + ib_1/X$$
 (7)
= $a + jb$ (8)

ただし、 $a=a_1/X$ 、 $b=b_1/X$ で共に入力最大振巾Xの関

数である。(8)式が一般の記述関数である。(8)式を表示方 法で分類すると下記のように示される.

直角座標表示: $N(X, j\omega) = a + jb$ 指数関数表示: $N(X, j\omega) = \sqrt{a^2 + b^2} e^{j \tan^{-1} a/b}$ 極座標表示 : $N(X, j\omega) = \sqrt{a^2 + b^2} / \tan^{-1}a/b$ (7)式の a_1 及び b_1 は個々の場合によって次の式で計算 しなくてはならない8).

$$a_1 = \frac{1}{\pi} \int_{r_1}^{r_2} y (\omega t) \sin \omega t \cdot d (\omega t)$$
 (9)

$$b_1 = \frac{1}{\pi} \int_{r_1}^{r_2} y (\omega t) \cos \omega t \cdot d (\omega t)$$
 (10)

ただし,変数 ωt の関数 y (ωt) が 2πなる周期をもって いる場合である.

3. 記述関数の求め方(非対称非線形要素)

記述関数の求め方としては簡単な要素の例⁷⁹⁹はあるが、複素平面を用いて積分範囲に必要な電気角を決定する複雑な例はみあたらないようである。それで非対称不動帯要素及び非対称バックラッシュを例にあげて電気角の求め方からくわしく記す。

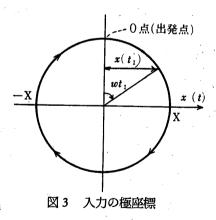

3-1 非对称不動体

図2の非対称不動体の入力を $x(t) = X \sin \omega t$ とすると,出力波形より次の三つの場合について分けて考える必要がある.

図 2 非対称不動体

i) δ1/x≥**1 の場合** 図 2 から明らかなように N (x, jω) = O となる

ii) $\delta_2/x \ge 1 \ge \delta_1/x$ の場合 図 3 において入力最大振巾Xを半径とする円を描きt = 0 のとき,Y軸との交点を 0 点とする. t=0 の点すなはち 0 点を出発点として時計方向に時間と共に入力が変化すると考えると t_1 だけの時間経過でX軸方向に $X\sin\omega t_1$ だけ振幅が増したことになる.図 3 をもとにして図 2 に関連した図 4 の電気角決定図を考える.図 5 の横軸に δ_1 を記入しての点に垂線をたてる.その点を A,B とする.〇点を出発して A点までの電気角 α では図 2 より出力はない. A 点からB点までの電気角範囲, $\alpha < \omega t < (\pi-\alpha)$ では出力 y (ωt) は 図 2 より

$$y(\omega t) = K_1(x - \delta_1)$$

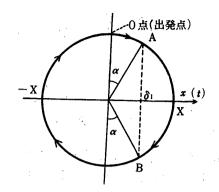


図4 電気角決定

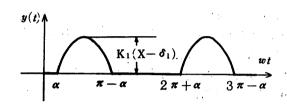


図 5 非对称不動体出力波形

である. $(\pi-\alpha) \le \omega t \le 2\pi$ では $y(\omega t) = 0$ である. 以上のことをまとめて表 1に示す.

表1

		移動	電気角	出力 y(wt)	
	1	\overrightarrow{OA}	$o \le \omega t \le \alpha$	0	
•	2	$\xrightarrow{\mathbf{AB}}$	$\alpha \leq \omega t \leq \pi - \alpha$	$K_1(x-\delta_1)$	
	3	→ BO	π - $\alpha \leq \omega t \leq 2 \pi$	0	
			<u> </u>		

ただし、aは図4より

 $b_1 = 0$

(11)

$$\alpha = \sin^{-1}\delta_1/X$$

(12

次に表 1 をもとにして(3)式の係数 a_1 , b_1 及び直流分 a_0 を公式で求める。 (計算は付録 1 参照)

$$a_0 = \frac{2K_1X}{\pi} \left\{ \cos\left(\sin^{-1}\frac{\delta_1}{X}\right) + \delta_1\sin^{-1}\frac{\delta_1}{X} - \frac{\delta_1\pi}{2X} \right\}$$

$$a_1 = \frac{K_1X}{2} \left[1 - \frac{2}{\pi} \left\{ \sin^{-1}\frac{\delta_1}{X} - \frac{\delta_1\pi}{X} \right\} \right]$$

$$+\frac{\delta_1}{X}\cos\left(\sin^{-1}\frac{\delta_1}{X}\right)$$
 (14)

したがって $\delta_2/X \ge 1 \ge \delta_2/X$ の場合の記述関数は(4), (5)式を(7)式に代入することによって得られる.

$$N(X \cdot j\omega) = \frac{K_1}{2} \left[1 - \frac{2}{\pi} \left\{ \sin^{-1} \frac{\delta_1}{X} + \frac{\delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) \right\} \right]$$
 (16)

(16)式の複素数部は零であるからこの記述関数は入力最大振幅 Xのみによってゲインが変化し、位相には何ら影響はない.

図 5 は $\delta_2/X \ge 1 \ge \delta_1/X$ の場合の 非対称非線形の出力波形である。 このようにかわった半波整流波形に近似するわけであるから(13)式のように $a_0 \ne 0$ となり直流分が存在するわけである。

iii) δ_2/X <**1 の場合** この条件下の 2 の出力 波形は 2 のようになる。この波形の電気角を 2 で参照し前節同様にしてまとめると表 2 になる。

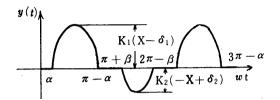


図 6 非对称不動体出力波形

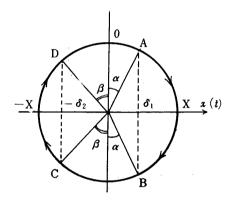


図7 電気角決定

表2

	移動	電気角	出力 y(ωt)
1	$\stackrel{-\rightarrow}{OA}$	$o \le \omega t \le \alpha$	0
2	\overrightarrow{AB}	$\alpha \leq \omega t \leq \pi - \alpha$	$K_1(x-\delta_1)$
3	\xrightarrow{BC}	π - $\alpha \leq \omega t \leq \pi + \beta$	0
4	$\overrightarrow{\text{CD}}$	$\pi + \beta \leq \omega i \leq 2\pi - \beta$	$K_2(x+\delta_2)$
5	DO DO	$2\pi - \beta \leq \omega t \leq 2\pi$	0

ただし、 α 、 β は図6より次のようになる。

$$\alpha = \sin^{-1}\frac{\delta_1}{X} \qquad \beta = \sin^{-1}\frac{\delta_2}{X} \qquad (17)$$

表 2 をもとにして a_0 , a_1 及び b_1 を計算で求めると $a_0 = \frac{X}{\pi} \left(K_1 \left\{ 2 \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) - \frac{\delta_1}{X} \left(\pi - 2 \sin^{-1} \frac{\delta_1}{X} \right) \right\} \right.$ $\left. - K_2 \left\{ 2 \cos \left(\sin^{-1} \frac{\delta_2}{X} - \frac{\delta_2}{X} \left(\pi - 2 \sin^{-1} \frac{\delta_2}{X} \right) \right\} \right) (8)$ $a_1 = \frac{X}{\pi} \left(K_1 \left\{ \frac{1}{2} \sin \left(2 \sin^{-1} \frac{\delta_1}{X} \right) + \frac{1}{2} \left(\pi - 2 \sin \frac{\delta_1}{X} \right) \right.$ $\left. - \frac{2 \delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) + K_2 \left\{ \frac{1}{2} \sin \left(2 \sin^{-1} \frac{\delta_2}{X} \right) \right\} \right.$

$$+\frac{1}{2}\left(\pi-2\sin^{-1}\frac{\delta_2}{X}\right)-\frac{2\delta_2}{X}\cos\left(\sin^{-1}\frac{\delta_2}{X}\right)\right\}\right)\langle 19\rangle$$

$$b_1 = 0 \tag{20}$$

したがって(19)、(20)式を(7)式に代入して得られる記述関数は $b_1 = 0$ より

$$N(X \cdot jw) = a_1/X$$
 ②) の形になり,ゲイン及び位相に関しては (16) 式と同様な関係である

3-2 非対称バックラッシュ

次の2つの場合に分けて記述関数を求める。

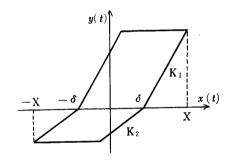


図8 非対称バックラッシュ

i) δ/X \ge **1の場合** 図 8 の非対称バックラッシュの 性質より明らかに $y(\omega t)=o$ であるから記述関数は

$$N(X, j\omega) = 0$$

となる.

ii) δ/X<**1 の場合** 図8と対応させて図9の電気角 決定図を得る。前章同様にして電気角を決定してまとめ ると表3になる。

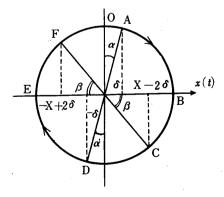


図 9 電気角決定

ただし,

$$\alpha = \sin^{-1}\delta/X$$
, $\beta = \cos^{-1}(X - 2\delta)/X$

前章同様に a_0 , a_1 , b_1 を求めるわけであるが,この場合出力 $y(\omega t)$ は表 3 より零になることがないので各々につき 7 回積分を行なって和を求めることによって得られる。(付録 2 参照) したがって,直流分 a_0 は

	移動	配	気	角	出力 y(ωt)
1	-→ OA	<i>o</i> ≤	$\leq \omega t \leq \alpha$		$K_2(x-\delta)$
2	\overrightarrow{AB}	α <u><</u>	$\leq \omega t \leq \pi/2$	2	$K_1(x-\delta)$
3	\overrightarrow{BC}	π/2≤	$\leq \omega t \leq \pi/$	2+β	$K_1(X-\delta)$
4	$\overrightarrow{\text{CD}}$	$\pi/_2$	+β≤ωt≤	$\leq \pi + \alpha$	$K_1(x+\delta)$
5	$\stackrel{\longrightarrow}{DE}$	$\pi + a$	<u>≤ωt≤</u> 3	$3\pi/2$	$K_2(x+\delta)$
6		3 π/ ₂ ≤	$\leq \omega t \leq 3\pi$	$\pi/2+\beta$	$-K_2(X-\delta)$
7	$\overrightarrow{\text{FO}}$	$3\pi/2$	$+\beta \leq \omega t$	$\leq 2\pi$	$K_2(x-\delta)$

$$a_0 = \frac{K_1 - K_2}{\pi} \left\{ 2\sqrt{X^2 - \delta^2} - 2\sqrt{X\delta - \delta^2} + 2\delta \sin^{-1}\frac{\delta}{X} + (X - 2\delta)\cos^{-1}\left(\frac{X - 2\delta}{X}\right) \right\} \quad (23)$$

 a_1 , b_1 を計算して(7)式に代入すると非対称バックラッシュの記述関数は次のようになる.

$$N(X, j\omega) = \frac{K_1 + K_2}{2\pi} \left(\frac{\pi}{2} + \sin^{-1} \left(\frac{X - 2\delta}{X} \right) + \frac{X - 2\delta}{X} \cos \left\{ \sin^{-1} \left(\frac{X - 2\delta}{X} \right) \right\}$$

$$-j4 \left(1 - \frac{\delta}{X} \right)$$
 (24)

(24)式から明らかなように複素数部が零でないから,入力最大振巾 Xによってゲインのみならず 位 相も変 化する $^{4)}$.

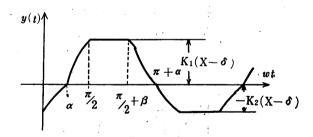


図10 パックラッシュ出力波形

以上2つの例を書いたが代表的非対称非線形要素9個 につき 計算により求めた 記述関数を 附表に まとめて示す.

4. ま と め

記述関数を定義づける方法として従来と異なり、伝達 関数の定義と周波数伝達関数定義の手法を用いた。する と方程式上の取扱いがスムーズに行われ、近似的に過渡 応答の算定にまで拡張解訳できる点に意義がある。

非対称非線形要素の記述関数の計算例がみあたらない ので解説し、代表的要素を計算して表にしてまとめた.

今後の方針としては、非対称非線形要素を含む自励振動系において、みかけ上消えるところの 定常項 a_0 の問題、およびナイキスト線図上での安定判 別に必要な 1/Nの軌跡を求める予定である.

本文作成にあたり御指導いただいた,山大工学部戸田 講师,計算を援助していただいた学生福井,足立両君に 深く感謝します.

参考文献

1) 高井宏幸:自動制御理論 オーム社

2) B, B, ソロドフニコフ・A, C, ウスコウ: 古屋・ 安達共訳: 自動制御系の統計的解析法 コロナ社

3) 嶺 • 足立: 第16回電気 4 学会九州支部 224 (昭38)

4) 嶺 • 足立:第42期日本機械学会全国大会 631(昭39)

5) 足立宜良:第14回電気4学会中国支部 4(昭38)

6) 近藤·丸橋:第55回研究例会資料日本自動制御協会 No 260 (1964)

7) Gibson: Nonlinear automatic Control Mc Graw-Hill

8) 電気学会編:電気回路論 電気学会

9) 電気学会編:自動制御 電気学会

付 録

[付録1](13),(14)および(15)式をみちびき出す.

i) (13)式の誘導

$$a_0 = \frac{1}{\pi} \int_{r_2}^{r_1} y(\omega t) d(\omega t)$$

上記の公式に表1の条件を代入して

$$a_0 = \frac{1}{\pi} \int_{\alpha}^{\pi - \alpha} K_1(x - \delta_1) \ d(\omega t) = \frac{K_1}{\pi} \int_{\alpha}^{\pi - \alpha} (X \sin \omega t - \delta_1) d(\omega t) = \frac{K_1}{\pi} \left[-X \cos \omega t - \delta_1 \omega t \right]_{\alpha}^{\pi - \alpha}$$

$$= \frac{K_1}{\pi} \left\{ 2 X \cos \alpha - \delta_1(\pi - 2\alpha) \right\}$$

(12)式の条件を代入して整理すると

$$a_0 = \frac{2K_1X}{\pi}\cos\left(\sin^{-1}\frac{\delta_1}{K}\right) + \delta_1\sin^{-1}\frac{\delta_1}{X} - \frac{\delta_1\pi}{2X}$$

ii) (14)式の誘導 (9)式より

$$a_1 = \frac{1}{\pi} \int_{r_1}^{r_2} y(\omega t) \sin \omega t d (\omega t)$$

上式に表1の条件を代入して

$$a_{1} = \frac{K_{1}}{\pi} \int_{\alpha}^{\pi - \alpha} (X \sin \omega t - \delta_{1}) \sin \omega t \ d(\omega t) = \frac{K_{1}}{\pi} \int_{\alpha}^{\pi - \alpha} \left\{ \frac{X}{2} (1 - \cos 2 \omega t) - \delta_{1} \sin \omega t \right\} d(\omega t)$$
$$= \frac{K_{1}X}{\pi} \left\{ \frac{1}{2} (\pi - 2 \alpha) + \frac{X}{2} \sin 2 \alpha - 2 \delta_{1} \cos \alpha \right\}$$

(12)式の条件を代入して整理すると

$$a_1 = \frac{K_1 X}{2} \left[1 - \left\{ \frac{2}{\pi} \sin^{-1} \frac{\delta_1}{X} + \frac{\delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) \right\} \right]$$

$$(14)$$

iii) (15)式の誘導 (10)式より

$$b_1 = \frac{1}{\pi} \int \frac{r_2}{r_1} y(\omega t) \cos \omega t \ d(\omega t)$$

同様にして

$$b_1 = \frac{K_1}{\pi} \int_{\alpha}^{\pi - \alpha} (X \sin \omega t - \delta_1) \cos \omega t \ d(\omega t) = \frac{K_1}{\pi} \left[-\frac{X}{4} \cos 2\omega t - \delta_1 \sin \omega t \right]_{\alpha}^{\pi - \alpha} = 0$$
 (15)

[付録**2**] a_0 , a_1 および b_1 について各々7 回積分を行う、と書いたが例として a_1 のみについて積分式を考えることにする。(9)式と表 3 より

$$\begin{split} a_1 &= \frac{1}{\pi} \Big\{ \int_0^\alpha K_2(x-\delta) \ d(\omega t) + \int_0^{\pi/2} K_1(x-\delta) \ d(\omega t) \ + \int_{\pi/2}^{\pi/2+\beta} K_1(X-\delta) d(\omega t) \\ &+ \int_{\pi/2+\beta}^{\pi+\alpha} K_1(x+\delta) \ d(\omega t) \ + \int_{\pi+\alpha}^{3\pi/2} K_2(x+\delta) \ d(\omega t) - \int_{3\pi/2}^{3\pi/2+\beta} K_2(X-\delta) d(\omega t) \\ &+ \int_{3\pi/2+\beta}^{2\pi} K_2(x-\delta) \ d(\omega t) \ \Big\} \end{split}$$

となる。この積分計算を行い図式の条件を代入することによって a1 が得られる。

ただし $x(t) = X \sin \omega t$	
٠	

78	6	勝 敏•足 立	宜良		
	4	ω ·	2	–	番号
(\delta_1 < \delta_2)	<u> </u>	Y(t) Y, X(t)	$Y(t)$ K_1 $X(t)$	Y(t) K, X(t,	非線形要素
III)	ii)		·		公 數
あ2/ X≤1 Y(t)	$\begin{array}{c c} \delta_1/X \geq 1 \\ \delta_2/X \geq 1 \geq \delta_1/X \\ \\ Y(t) \\ \\ X_{\lambda, \lambda} \\ \\ X_{\lambda, \lambda} \\ \\ \\ X_{\lambda} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1.00 t.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ.γ	To the state of th	X(t)	入力条件と入出力波形
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$y(t) = 0$ $\emptyset o \le \omega t \le \alpha \qquad y(t) = 0$ $\emptyset \alpha \le \omega t \le \pi - \alpha \qquad y(t) = K(x - \delta_1)$ $\emptyset \pi - \alpha \le \omega t \le 2\pi y(t) = 0$ $t \ge \zeta \alpha = \sin^{-1} \delta_1 / X$				電気角と出力がなり
$N = \frac{1}{\pi} \left[K_1 \left\{ \frac{1}{2} \sin \left(2 \sin^{-1} \frac{\delta_1}{X} \right) + \frac{1}{2} \left(\pi - 2 \sin \frac{\delta_1}{X} \right) - \frac{2 \delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) \right\} + K_2 \left\{ \frac{1}{2} \sin \left(2 \sin^{-1} \frac{\delta_2}{X} \right) + \frac{1}{2} \left(\pi - 2 \sin \frac{\delta_2}{X} \right) - \frac{2 \delta_2}{X} \cos \left(\sin^{-1} \frac{\delta_2}{X} \right) \right\} \right]$	$N = \frac{K_1}{2} \left(1 - \frac{2}{\pi} \left\{ \sin^{-1} \frac{\delta_1}{X} + \frac{\delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) \right\} \right)$	$N = \frac{2}{\pi} \left(r_1 + r_2 \right)$	$N = \frac{K_1 + K_2}{2}$ $(K_2 < 0)$	$N = \frac{K_1 + K_2}{2}$	記述関数ル

· ·	ο,			Ст
$(\delta_1 {<} \delta_2)$	$(\delta_2 + h)$ $(\delta_2 + h)$ $(\delta_3 + h)$ $(\delta_1 + h)$ $(\delta_1 + h)$		$(\delta_1 < \delta_2)$	$\begin{array}{c} X_{(t)} \\ X_{(t)} \\ X_{(t)} \\ X_{(t)} \end{array}$
ح.	iv)	ii) iii) iii)	iii)	i)
Y(t) 出力 wt	$(\delta_1 + h)/X \le 1$ $(\delta_2 + h)X \ge 1 \ge \delta_2/X$ $(\delta_2 + h)X \ge 1 \ge \delta_2/X$ $(\delta_1 + h)/X \ge 1$ $(\delta_2 + h)X \ge 1 \ge \delta_2/X$ $(\delta_2 + h)X \ge 1 \ge \delta_2/X$ $(\delta_2 + h)X \ge 1 \ge \delta_2/X$	$\frac{\delta_2/X \ge 1}{\delta_1/X \le 1 \le \delta_2/X}$ $\frac{(\delta_1 + h)/X \ge 1 > \delta_1/X}{(\delta_2 + h)/X \ge 1}$	82/X ≤1 Y(t)	$\begin{array}{c c} \delta_1/X \geq 1 \\ \hline \delta_1/X \leq 1 \leq \delta_2/X \\ \hline \\ Y(t) \\ \hline \\ \lambda J \\ \omega t \\ \end{array}$
① 一般 は 6 一iv) に同じ ② $\pi + \alpha_2 \le \omega t \le \pi + \beta_2$ $y(t) = K_2(x + \delta_2)$ ② $\pi + \beta_2 \le \omega t \le 2\pi - \beta_2$ ② $\pi + \beta_2 \le \omega t \le 2\pi - \beta_2$ $y(t) = K_2(X - \delta_2 - h)$ ② $2\pi - \beta_2 \le \omega t \le 2\pi - \alpha_2$ $y(t) = K_2(x + \delta_2)$ ② $2\pi - \alpha_2 \le \omega t \le 2\pi$ $y(t) = 0$ $t \succeq \ \ \ \ \ \ \ \ \ \ \ $		$y(\omega t) = 0$		
$N = \frac{K_1}{\pi} \left\{ \sin^{-1} \frac{\delta_1 + h}{X} - \sin^{-1} \frac{\delta_1}{X} + \frac{\delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) - \frac{\delta_1 - h}{X} \cos \left(\sin^{-1} \frac{\delta_1 + h}{X} \right) \right\}$ $+ \frac{K_2}{\pi} \left\{ \sin^{-1} \frac{\delta_2 + h}{X} - \sin^{-1} \frac{\delta_2}{X} + \frac{\delta_2}{X} \cos \left(\sin^{-1} \frac{\delta_2 + h}{X} \right) \right\}$ $\left(\sin^{-1} \frac{\delta_2}{X} \right) - \frac{\delta_2 - h}{X} \cos \left(\sin^{-1} \frac{\delta_2 + h}{X} \right) \right\}$	$N = \frac{K_1}{\pi} \left\{ \sin^{-1} \frac{\delta_1 + h}{X} - \sin^{-1} \frac{\delta_1}{X} + \frac{\delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) - \frac{\delta_1 + h}{X} \cos \left(\sin^{-1} \frac{\delta_1 + h}{X} \right) \right\}$ $+ \frac{K_2}{2\pi} \left\{ \pi - 2 \sin^{-1} \frac{\delta_2}{X} - \frac{2 \delta_2}{X} \cos \left(\sin^{-1} \frac{\delta_1 + h}{X} \right) \right\}$ $\sin^{-1} \frac{\delta_2}{X} \right\} + \frac{2 K_1 h}{\pi X} \cos \left(\sin^{-1} \frac{\delta_1 + h}{X} \right)$	N= 0 4—ii) と同じ 4—iii) と同じ	$N = \frac{1}{\pi} \left\{ K_1 \left\{ \sin^{-1} \frac{\delta_1}{X} + \frac{\delta_1}{X} \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) \right\} + K_2 \left\{ \sin^{-1} \frac{\delta_2}{K} + \frac{\delta_2}{X} \cos \left(\sin^{-1} \frac{\delta_2}{X} \right) \right\} \right\}$	$N = rac{K_1}{\pi} \left\{ rac{\delta_1}{X} \cos \left(\sin^{-1} rac{\delta_1}{X} ight) + \sin^{-1} rac{\delta_1}{X} ight\} + rac{K_2}{2}$

	• •	o	~ ~
$(\delta_1 < \delta_2)$	$\begin{array}{c} Y(t) \\ -(\delta_2 + h) \\ -\delta_2 \end{array}$	$(\delta_1 < \delta_2)$	Y(t) K ₁ X(t)
iii)	ii)	12 13 13 13 13 13 13 13	E I
$(\delta_2 + \hbar)/X \leq 1$ $Y(t) \qquad \qquad \text{if } \qquad \qquad if$	$(\delta_1 + h)/X > 1$ $(\delta_1 + h)/X \le 1$ $<(\delta_2 + h)/X$ $(\delta_2 + h)/X$ $(\delta_3 $	$\begin{array}{c c} \delta_1/X \leq 1 < \delta_2/X \\ \delta_2/X \leq 1 \\ \\ Y(t) \\ \hline \\ & \lambda h \\ \underline{\\}_{at} \end{array}$	$\delta/X \ge 1$ $\delta/X \le 1$ $\chi_{(1)}$ λ_{J} $\psi_{(1)}$ $\delta_{1}/X \ge 1$
	$y(\omega t) = o$ $\emptyset o \le \omega t < \alpha 1 \qquad y(t) = o$ $\emptyset \alpha_1 \le \omega t \le \pi - \beta_1 y(t) = r$ $\emptyset \pi - \beta_1 \le \omega t \le 2\pi y(t) = o$ $\uparrow z \not z \downarrow \zeta \qquad \alpha = \sin^{-1} \delta_1 / X, \beta = \sin^{-1} (\delta_1 + h) / X$	$y(\omega t) = r$	$y(\omega t) = 0$ $\bigcirc 0 \leq \omega t \leq \alpha$ $\bigcirc 0 \leq \omega t \leq \pi/2$ $\bigcirc 0 \leq \omega t \leq \pi/2$ $\bigcirc 0 \leq \omega t \leq \pi/2$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 + \beta$ $\bigcirc 0 \leq \omega t \leq \pi/2 + \beta$ $\bigcirc 0 \leq \pi/2 +$
$N = \frac{\tau}{\pi X} \left\{ \cos \left(\sin^{-1} \frac{\delta_1 + h}{X} \right) + \cos \left(\sin^{-1} \frac{\delta_2}{X} \right) + \cos \left(\sin^{-1} \frac{\delta_2 + h}{X} \right) + \cos \left(\sin^{-1} \frac{\delta_2}{X} \right) \right\} - j \frac{2rh}{\pi X^2}$	$N = \frac{r}{\pi X} \left\{ \cos \left(\sin^{-1} \frac{\delta_1 + h}{X} \right) + \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) \right\} - j \frac{rh}{\pi X^2}$	直流分だけである。 $N=o$ $N = \frac{2\tau}{\pi X} \left\{ \cos \left(\sin^{-1} \frac{\delta_1}{X} \right) + \cos \left(\sin^{-1} \frac{\delta_2}{X} \right) \right\}$ $-j\frac{2\tau}{\pi X^2} (\delta_1 + \delta_2)$	$N=0$ $N = \frac{K_1 + K_2}{2\pi} \left(\frac{\pi}{2} + \sin^{-1} \left(\frac{X - 2\delta}{X} \right) \right)$ $+ \frac{X - 2\delta}{X} \cos \left\{ \sin^{-1} \left(\frac{X - 2\delta}{X} \right) \right\}$ $-j4\delta \left(1 - \frac{\delta}{X} \right) \right]$ $N=0$