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Global Well-Posedness and Exponential Attractor
for the Oregonator System with Global Feedback

Koichi Osaki!, Tatsunari Sakurai? and Shuji Yoshikawa'

Abstract. The Belousov-Zhabotinskii (BZ) reaction is a phenomenon of a nonlinear chemical oscillator. The
Oregonator model system with photochemical pathway is a mathematical model of the photosensitive BZ
reaction. In the paper, the global well-posedness of this system is shown and to investigate the large time
behavior of the solutions the exponential attractor is constructed.
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1. Introduction.

In this paper we consider the following Oregonator model system of equations with global feedback:

Oou 1 u—q .
i Dy, Au + B {u(l —u)— (fv+ ¢u)m} in 2 x (0,00),
v .
(OR) i DyAv+u—v in Qx(0,00),
ou  Ov
%——8——72—0 on 09 x (0,00),
u(z,0) = up(z), v(z,0) =wvo(x) in €,

where © is a bounded domain with smooth boundary 9. The unknown functions u and v describe
HBrOs and the Ru(III) catalyst concentrations, respectively. The coefficients D, Dy, &, f and ¢ are
positive constants. We denote the feedback term by ¢,. In this paper we define ¢, as

bult) = a / w(, P de + b,
Q

where @ > 0 is a gain constant, b € R is an offset constant and p > 1 is an arbitrary number. This
feedback function is introduced in [4] (cf. [5]). If a = b = 0, then (OR) is a two-variable Oregonator
system (see [2, 8]). The system (OR) is a modified model to include the photosensitivity of the BZ
reaction [3]. The system has presented many physical and mathematical phenomena, which have been
studied in both sides. Indeed, a stabilized chemical packet can be seen by numerical computation
in [4]. However, from the mathematical point of view the well-posedness is not treated as far as the
authors know even if the feedback term is absent (a = b = 0). The aim of this paper is to show the
global well-posedness of (OR) and to investigate the behavior of solutions. Here the well-posedness
includes the time global existence, uniqueness and the continuous dependence of the solution upon
the data.
The following theorem is concerned with the global well-posedness of (OR).
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Theorem 1.1 (Global Well-Posedness). Let (ug,vg) € HZ,(Q) x H3(Q) with ug € [q, 1] and vy €
[0,1]. Then there exists a unique solution (u,v) for (OR) satisfying

u, v € C([0,00); H () NC(0,00); H'(9) NC((0,00); HY(92)).

In addition, u and v satisfy u € [g,1] and v € [0,1].
Hence, the solution map S(t) : (uo,vo) — (u(t),v(t)) generates a continuous dynamical system in

K = {(uo,v0) € Hy x HY | ug € [q,1], vo € [0,1]}.

Here, we define
H3 () = {uEHm(Q) | %20 on 89} for m=23.

A priori uniform estimates obtained in above admit also existence of absorbing set B. Here, B is
an absorbing set if B is a compact subset of the phase space and, for every bounded subset B C K,
there is a time ¢5 which may depend on B such that Utst, S(t)B C B. By the existence of absorbing
set we can construct a global attractor. In fact, according to Temam [7, Theorem 1.1], the w-limit set
A of B defined by

A=wB)=(Jsw®B

s>0t>s

is the global attractor for ({S(¢)}i>0, K). Here, ({S (t)}t>0, K') means the dynamical system generated
by S(t) in K.

By constructing an exponential attractor, we can obtain more precise informations for the behavior
of solutions. The concept of an exponential attractor is established by Eden, Foias, Nicolaenko and
Temam [1]. Let us assume that H is a separable Hilbert space, A is a positive definite self-adjoint linear
operator in H, the inverse of which is a compact operator on H. We define the set X — UtZtB S(t)B
with fixed ¢z such that Utztg S(t)B C B. 1t is easily observed that X is a compact subset of H such
that A C X C B and X is absorbing and invariant for ({S(#) }>0, K). Therefore, to know the large
time behavior of solution it suffices to consider ({S(t) H>0,X).

The exponential attractor is defined as follows, see Eden et al. [1].

Definition. A subset M C X is called the exponential attractor for ({S(t)}¢=0, X) if the following
conditions are satisfied,

)AcMca;

ii) M is a compact subset of H and is an invariant set for S (t);

iif) M has finite fractal dimension dp(M);

iv) h(S(t)X, M) < cpexp(—cit) for ¢ > 0 with some constants co, ¢1 > 0, where

h(Bo, B1) = sup inf ||U —V|y
UeBo VeB;

denotes the Hausdorff pseudodistance of two sets By and B;.
In the following theorem, we construct the exponential attractor for the dynamical system of (OR).

Theorem 1.2 (Exponential Attractor). Let B be an arbitrary bounded set in K. Then, there
exist a time tp and a universal constant R for B such that

sup  ||S(t)(wo,vo)||grzxsrz < R for all ¢ > tg.
(uo,v0)€B

Therefore, a compact set B = {(u,v) € K; ||(u, v)|| g2 2 < R} in HY(Q) x HY(Q) is an absorbing set
Jor the dynamical system ({S(t)}e>0, K).
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We denote by tg a number satisfying S(¢)B C B for t > tp and we set

_____H1><H1
x=JswB

t>tn
Then the dynamical system ({S(t)}>0,X) admits an exponential attractor M.

We devote Section 2 to list the preliminary results. In Section 3 we construct the time local solution
by using semigroup method for the abstract semilinear parabolic equation. Section 4 is devoted to
give a priori estimates which also admits the existence of absorbing set. We construct the exponential
attractor in Section 5.

Remark. In the case of the periodic boundary condition:

ou 1 UuU—q )

T D, Au + - {u(l —u) — (fvo+ ¢u)——u+q} in (T, x Ty,) x (0,00),
ov .

5= DyAv+u—v in (T x Tp,) % (0,00),

u(z,0) = up(x), v(z,0) =wvo(x) in Ty x Ty,

the same results as the main theorems can be also proved. Here T; means the one-dimensional torus
of period [, i.e., Ty = IT = [R/Z. In this case, we can characterize the fractional power of (—A + 1)
easily by using the Fourier expansion.

2. Preliminaries.

We denote by LP(£2), 1 < p < 0o, the complex-valued L space with the norm || - [[zr. Denote also
by H™(Q), m = 0,1,2,-- -, the complex-valued Sobolev spaces with the norm Il [|zrm. When m =0,
HO(Q) = L%(Q). We denote by B(Q2) and C(£2) the spaces of complex-valued bounded functions and
continuous functions on Q with norm ||-||5 and |||, respectively. Let I be an interval in R, and H be a
Banach space. C(I; H) and C*(I; H) are the space of H-valued continuous functions and continuously
differentiable functions on I, respectively. B(I; H) is the space of H-valued bounded functions on 1.
Let H; and Hj be two Banach spaces. Then, the product space H = Hy X Hj can be considered, and
the norm is given by || [|g = || - ||z, + |- || - Especially, we use the notations L2(Q) = L?(Q) x L(2),
H(Q) = H'(Q) x H'(Q) and HR(Q) = HF(Q) x HF(Q), m = 2,3. Here the function space HJ ()
is defined as

H () = {ue H™(Q) g—z =0 on BQ}, m=2,3.

For 0 <sp<s<s1 <00,
HE(Q) = [H®(Q), H (Q)]g, s=(1— 0)so + 0s1,

which is the complex interpolation space between H*0(€) and H*'(Q) with the norm || - lzrs. The
following inequality is true:

e

(2.1) I Nlzze < Coll - Iz
When s > 1, H3(2) C C(Q) with

(2:2) - lls < Csll - s
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When s = 1, H'(©2) C L9(Q) for any finite ¢ € [1,00) with

(2.3) I llze < Cpall - lim? - 1151,

where 1 <p < g <oc. When 0 <s <1, H(Q) C Lp(Q),I—l) = 152 with

(2.4) - llee < Csll - flzrs-

From (2.2), (2.3) and (2.4), the inequalities on multiplication of two functions are derived. Let &
be an arbitrary positive number. Then,

(2.5) luollam < Crellullamllvlgive, uwe H™(Q), v e H™(Q), m =0,1.

Consider an operator A = —DA+1, D is positive constant. Then, A is a positive and self-adjoint
operator of L?(2) with the domain D(A) = H (). For a > 0, the fractional power A% is defined.
The operator A% is also a positive and self-adjoint operator of L2(Q). It is well-known that

DA% H*(Q), 0<a<3,
| HRQ), f<ac<i

with the norm equivalence. But, we verify that

D(A%) = H¥(Q), 1<a<

N o

Indeed, Au € D(A®) shows that Au € H(Q) with g—z =0 on 0f2. While 99 is of class C3, these then
imply that v € H3(Q).
Next, we give the time local existence theorem for the semilinear abstract parabolic problem:

dU

T LAU=FU), 0<t<T,
(2.6) di ) =

U0) = Uy

in some function space H. It is well-known results that if the nonlinear operator F' satisfies appropriate
Lipschitz continuity, a local solution can be constructed (e.g. [9]). In [6] the first author and Yagi
introduced the modified Lipschitz condition given by (2.9) below.

Proposition 2.1. ([6, Theorem 3.1 and Corollary 3.2]) For the initial value problem of a semi-
linear abstract evolution equation (2.6) in a Banach space H, assume that A is a closed linear operator
of H satisfying that

M

(2.7) [(A=A4)"" < NFT Ag X,

with X = AeClarg\| <y}, 0< ¢ < 5, and M >0 is a constant, and the initial value satisfies an
estimate

(2.8) AUy <,

where o € [0, 1) is some exponent and r > 0 is a constant. Assume also that F(-) satisfies a Lipschitz
condition

(2.9) |FU) = FO)llr < P|1A°U 1z + A0 |7)
x AU =0l + (140 |1 + AT [l + 1) || AU ~ U)HH}, U, U € D(A),
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with an exponent n € [o, 1) and an increasing continuous function P(-). Then, there exists a unique
local solution to (2.6) such that

U € C((0,T3]; D(A%) NCM(0,T]; H) NC((0,T); D(A)), U € B((0,T;]; D(4)).
Moreover, the follwing estimates hold:

AU @)l + AUl < G, 0<t <o,
sup 7O AMU () — V(O)}lu + max [A*{U() = U a < CllA*{Uo — Uo}lm,
0<t<Ty 0<t<Tr
where U(t) is the solution of initial value Uy € D(A%), and Uy satisfies (2.8).

To construct an exponential attractor let us apply the following proposition:

Proposition 2.2. Assume that F(U) satisfy the Lipschitz condition
(F) |\FU) = FO)| < ClA2(U ~O)llu, U.U €&

Let S(t) be the solution map of (2.6) and p € (0,1]. Suppose that the mapping G(t, Up) = S(t)Uy from
[0,7] x X into X satisfies the Lipschitz condition

(G) IG(t, Us) — G(s, Uo)llr < Cr{ [t = sl + U = Tollm}, t,5 € [0,T), Uo,Uo € &,
for each T > 0. Then, there exists an ezponential attractor M for ({S(t)}i>0, X).

This proposition follows from a modification similar to [1, Theorem 3.1] which corresponds to the
above proposition in the case of p = 1. The proof is reduced to constructing a similar exponential
attractor for a discrete dynamical system ({S7}n>0, X), where S, = S(t,) with a suitable time ¢, >
0. For the discrete dynamical system, the condition on S, called the squeezing property plays an
important role: for some ¢ € (0, %), there exists an orthogonal projection P of finite rank N such
that for each pair U, U € X either |S,U — S.Ullg < 8|U = Ullg or |(I — P)(S.U — S.O)|lg <
|P(S:U — S.U)||zr. In the case when the dynamical system is determined by a semilinear evolution
equation such as (2.6), this property can be verified from the Lipschitz condition (F), see [1, Proposition
3.1]. As a result, the existence of an exponential attractor M, for ({S} }n>0, X') can be obtained, as
well the dimension is estimated by dp(M,) < N max{1, log(% +1)/log(z)}, where L is a Lipschitz
constant of the mapping S, from X into itself. Let M := G([0,t:] x My) = Upcpey, St)Ms. We
shall prove that M is an exponential attractor for ({S(#)}+>0,X). The conditions i), ii) and iv) in the
definition of the exponential attractor can be verified in the same fashion as [1, Theorem 3.1]. Then
it suffices to show the finiteness of the fractal dimension dp(M). Here, we give the claim.

Claim. Let p € (0,1]. Assume that for the normed space Y1 and Vo the map ¢ : Y1 — Yo is the
Holder continuous, namely,

l(y) =@y, < Clly =0l 3.7 €N
Then for the set U C Yy it holds that

dr(H(U)) < %dﬂm.

If we admit the claim, then the fractal dimension of M is estimated by dp(M) < (drp(My)+1)/p <
oo. Indeed, since

IG(t, U) — G(s, Uo)llr < C(It = 51 + |Us = Tollar) < C(It — | + 106 = Uoll )",
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we have
dF(M) = dF(G([07t*] X M*))
ghﬂmmeQ

(dp(My) +1).

bl'—‘

Then the condition iii) is satisfied.

Ne(U)

Lastly, we give the proof of the claim. We take the finite ball covering {B,(z;)};=; " of U such

that

N ()
(2.10) Uc |J Belx:)
j=1

where B.(z;) C Vi is the ball centered at x; € )y with the diameter e.
Since

sup  l(y1) = (ye)lly, C sup lyn —2llf),,
Y1,Y2€Be () Y1,¥2€Be(24)

there exists «} € V5 such that
¢(Be(xz)> - BCep(xé) C Vs
It follows from (2.10) that

N (U)

Ne(W)
bU) < | (Be(xs)) UBW@

=1

Then (i) can be covered by at least N, (i) balls with the diameter Ce?, which implies N (W) <
N¢(U). Therefore, we arrive at

L log Neer ((U))
de(ypU)) = hr:lj(l)lp log(1/Cer)

: log N(U)
< limsup ———=
T o0 P plOg(l/E)

1
= —dp(U),
p()
which completes the proof of the claim.

3. Local Solution.

The local solution will be constructed by the semigroup method (Proposition 2.1) and the truncation
method. We consider an auxiliary equation of (OR):

( 1
% = D, Au + - {u(l —u) = (fo+ éu)(u—@)g(Reu)} in € x (0, 00),
(bﬁ) %:DUAv—i-u—v in Qx(0,00),
ou  Ov
%_8_71_0 on 0N x (0,00),
u(z,0) =ug(w), v(z,0) =vo(z) in Q,
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where g(§) is an extension function of ngq such that

1 q
o= | Fo )
smooth extension with |g(§)| < ?Ji_g’ 19O +19"(6)| <C, &€ (-0, ).
We remark that in this system u and v are extended to the complex valued functions in order to apply

Proposition 2.1. In view of the proposition by precise setting of H, D(A%) and D(A") we have an
existence theorem of local solution.

Theorem 3.1. Assume that (ug,vo) € H3(Q) such that ||(uo,vo)|lge <7 andr is a positive constant.
Then, there ezists a unique local solution (u,v) to (OR) such that

(u,v) € ([0, Z;]; HA(Q2)) N (0, T3]; H'(Q)) NC((0,1;]; H ().
Moreover, the following estimates hold:

V| (uy )l + 1w, v)[lge < Cr, 0<t < T

Proof. The system (b\f/{) is formed as an abstract semilinear evolution equation (2.6) for U = (u,v),

. _ -D,A+1 0
UO*(U(),’UO),A— ( 0 _DUA+1> a’nd

U

) - < wt Sl — ) = (fo+ u)(u — g(Rew)) ) |

Let us define H = H(Q2), D(A) = H}(Q) and a = 5 = 1/2. In the setting, (2.7) and (2.8) are clearly
satisfied. We shall check the condition (2.9) in Proposition 2.1. We write U = (@, %) and Uy = (@i, Do)-
Let us consider first the Lipschitz continuity of v(u — q)g(Rew) in H'(€2). From the difinition of g we
have supgcg [9(€)| < 2/¢. It is easy to see from (2.5) that

[v(u — @)g(Reu) — 5(i — q)g(Re @) g
< (v =2)(u — g)g(Rew)|| g + [|9(u — @)g(Re u) | g
+[[o(2 — ¢){g(Reu) — g(Re @) }|| i1
< C{lullgz + Dllv — ol g2 + 18] g2 flu — @l g
+ (|all gz + 1) |o{g(Rew) — g(Re @)}z }-

Here, by noting that

1
g(Rew) — g(Reii) = / §((1— 0)(Re @) + 6(Re u))dO{Re (u — i)},
0
we have
|5{g(Rew) — gRe @)} < Cllo(u— @)l < C|0]l g2 llv — all g2
Hence, it is obtained that
[o(u — ¢)g(Rew) — o(it — ¢)g(Re w)| g
< O(lullge + 1)|lv = 0llgz + Clloll g2 (1@l 2 + Dllu — @l 2
< C(| AUl + 1 A°Ulg + DAVl m + AU + DIAYU = U)la-
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For the Lipschitz continuity of ¢,(¢)(u — ¢)g(Rew) in H(Q), similarly we have

[#u(u — q)g(Rew) — da(t — q)g(Re @)|| g1
< ¢ — dalll(v — @)g(Rew)|| g + |¢alll(u — @)g(Rew)|| g
+ [dalll(@ — 9){g(Re u) — g(Re @) }||
< Clllullgr + Vel + @5 il — @llze + C(allals, + b)) {[lu — il g
+ C(lla]l gz + 1llu — @l g2}
< C(llulles + alhs" + D lullgz + @l gz + 1)l — il
< CP|1AUm + | AU g) AU gl A0 |1 + 1) | AU — U)||,

where P(r) = 1+ rP*1. For the Lipschitz continuity of another term, it is easy to show it. We then
obtain

(3.1) IF(U) = FO)|u
< CP(IAUNm + AU ) (AU | + |AU | + DIAYU = U)o
Therefore, (2.9) is verified. The proof is completed. O

In the last part of this section we verify the boundedness of solution.

Proposition 3.2. Let (u,v) be the local solution on [0,T] obtained in Theorem 3.1. Provided that the
offset constant b as

(32) b Z —aqp|Q|7

where |Q is a measure of Q, and assume that the initial function (ug,ve) € H3,(Q) satisfies ¢ <
uop(z) <1 and 0 < wp(z) <1 in Q. Then, u and v satisfy that

g<u(z,t) <1 and 0<wv(z,t) <1 in Qx[0,T]

Proof. First, we note that v and v are real-valued. Indeed, the complex conjugates of u and v also
satisfy (OR). Let us show u > q. Prepare a C3-function J;(-) as follows:

() (u—q)* for u < ¢,
u) =
' 0 for u > gq.

This function satisfies that

0 < Ji(u)(u—q) <4J1(u), wu € (—o0,00);
(3.3) Ji(u) <0, u<g; Ji(u)=0, u>g;
J{(u) >0, u € (—o0,00).

Then we have
(1) = -D, /Q T () [Vuf? da
1

+ { JRATIIEr AW+ 0= atRew) dw} |
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Here,
/Q i (wyu(l — u) dz = ( /u I /O L /u 2q> T (wyu(l = ) da

< /u JRACEEE
_ /KO J (u)(u — q)“(uj___‘:) da
< [ A=t + (- o)
< Cllullwe +1) [ h(wds
< Cupr (1)

Meanwhile,

—LHMUM¢MuwMMMS/ T () — )| fo + dullg(w)| da

SQMW+WMALM®
< Cu,v‘Pl (t)

Therefore, we have ¢ (t) < Cyup1(t). Noting that ¢i(t) > 0 and ¢1(0) = 0, it is obtained that
©1(t) = 0. This shows u > ¢. As for v > 0, by quite similar technique we obtain it.
Next, we shall show u < 1. Prepare here another C*-function Ja(+) as follows:

u—1)* for u > 1,
o) = ( )
0 for u < 1.
This function satisfies that

Jo(u) >0, u>1; Jo(u) =0, g<u<l,
(3.4) Jh(u)y >0, u>1 J(w)=0, g<u<l,
JY(u) >0, u=>gq.

Define
pa(t) = / Jo(u(z,t))dz, 0<t<T.
Q

Then, by noting that ||u|[?, > ¢?|Q| we have

(1) = D%L%mowm%m+éﬁg&m{M1fw—pm+¢w“‘q}m

_ v
< l/ () —1 {“(1 — Wt _ ) - b} dz.
€ Ju>1 Uu+q U —dq

Provided the constant b as (3.2), it is clear that

u(l —u)(u+q)
u—q

—ad’|Q-b<0 for w>1
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Therefore, we have ¢ (t) < 0; hence @y(t) = 0. This implies v < 1. An argument similar to the above
yields v < 1. a

In this section, we constructed the time local solution for the auxiliary equations ((/)\ﬁ), and the
solution (u,v) remains to the intervals [g,1] x [0,1]. It holds that

g(Reg) = for & € [q,1].

£+4q
Hence, the solution of ((/)\ﬁ) coincide with the solution of (OR), which implies the unique local existence
of (OR).

4. A Priori Estimates and Global Solution.

In this section we shall first give several apriori estimates.

Lemma 4.1. Let (u(t),v(t)) for 0 <t < T be the local solution to (OR) of Theorem 8.1 of an initial
function (ug,v0) € H'(Q) with ug € [g,1] and vy € [0,1]. Then, there exists a positive constant
exponent o independent of (u,v) such that

(4.1) I(u(®). v ()l < Cle™|(uo, vo)lm +1), 0<t<T.

Proof. We first show an estimate of L.2-norm of (u, v). Multiply the first equation of (OR) by u and
integrate the product in . Then,

£d 2 / 2 / 2 / 3 / u—gq
-— d D Vul"dz = dx — dx — ” dx.
2 7 Qu x+eD, Q[ ul” dx Qu x Qu x Qu(fv+¢)u+q x

Here, noting that
/qua:~/u3d:c < -/ u2d$+2|Q|,
Q Q Q

q u—gq u—gq
dr = — + Ik d —b/ d
v = [ alro+alu@) L Kt

U+ q
1
< |b|/udaz§ —/uzdx+b2|Q[.
Q 4 Jo

and

u —

~ [ utro+ 6

Therefore, we obtain
d 2 32 2 2
(4.2) EEHUHLQ + §||UHL2 +2€Du||V'LLHL2 < 2(b —|—2)|Q|.

Meanwhile, multiplying the second equation of (OR) by v and integrating the product in €, we
have

d
(4.3) Z0lZ2 +2Du [ VollZ: + [[v]72 < [lull?.

Combining (4.2) and (4.3), we obtain

d 1
a(ellwliz +llvllZ2) + 2(eDu||Vull}z + Dy Vo|22) + §HUII%2 +lvllZs
< 2(b% +2)|Q).

(4.4)
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By choosing 6 = min{1/2¢,1} we have

2(b% + 2)|9|

<t<T.
3 , 0<t<

(4.5) el + llo(®)]3a < e (eluoll 72 + lvollZ2) +

Next we show an estimate of H'-norm of (u,v). Multiply the first equation of (OR) by Au and
integrate the product in €. Then,

d 2
';'E/ |Vu12dx+5Du/ |Au|2dx+2/ulvu12dx+/(fv+a\|u||gp)—q—|vu|2dx
Q Q2 Q Q

(u+q)?
:/IVUIQdm—f/ Z;ZVu~Vvdx—b/—2i—|Vu|2dm.
Q Q Q
d
5—/ ‘Vulzd:c+2€Du/ \Au]gda:-l—élq/ |Vu|® dz
dt Je Q Q

(u+q)?
Ib\> 5 5 5
< <3+—q /Q|Vu| dr + f /QIW dz.

(3+12)2
i Ja u?dz, we have

Tt then follows that

By noting that (3 + %) [ |Vu*dz < eDy [ | Au® dz +

3+

d
e ZIVulfa + eDull Auls + 4] Vulf: < — 5

2
lullZz + £ VolZ2.

Meanwhile, multiplying the second equation of (OR) by Av and integrating the product in 2, we
get

d 1

IVl + Dyl Av]|72 + 2 Vollfe < - llullze-

dt D,
Combining these inequalities yields

d
E(&IIWH%zHQIIWH%z) + Dy || Aul2 + 2Dy || Av||7,
+ 4q||Vull2z + F2IVol2. < Cllull7..

(4.6)

Then in view of (4.5) it holds that
d =
5 EllVulzs + PIV0)22) + 0 Vullfe + IV olge) < e *(elluoliis + llvollzz) + C.

Choosing § as 0 < ¢ < min{4g/e, 1, 5}, we conclude that

(47) ellVu@®)|7: + F2IVo®)liz:
' < e M| Vuoll2: + 2 VuollFz) + Ce (e fluollzz + lwollz2) + € 0< ¢ <T.

By combining (4.5) and (4.7) it indicates (4.1). O

In the case where Uy € (), we have another a priori estimate of H2-norm.

Theorem 4.2. Let (u,v), 0 < t < T, be the local solution to (OR) of Theorem 3.1 of an initial
function (ug,ve) € H3(Q) with ug € [g,1] and vo € [0,1]. Then, there exist a positive constant
exponent & and an increasing continuous function P(-) independent of (u,v) such that

(4.8) 1(u(t), v(£)) Iz < Ce||A(uo, vo)lliz + P(ll(uo; o)), 0=t <T.
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Proof. Operating V to the first equation of (OR), multiplying it by V. Au and integrating the product
in 2, we have

ed

——/ fAu|2dx+gDu/ |VAu|2da;§/|VAWu|dx
2dt Q Q Q

+ (f+ M) / |V AuVo|dz + 2/ [uV AuVu|dz + %]—f/ [vV AuVv|dz.
q Q Q Q

All integrals of the right-hand side are estimated from above by ¢ Jo IV AulPdz + pe(||ull g + o)l )
with ¢ arbitrary. Indeed, in view of

/Q W2 Vudz < Jlul2[VullZe < Olfullzelful2p lull e
<C(ulbn + 1) +C (—/ VAuVudx)
Q
S C2/ ,VAUFdLE + CC(”’LL”?_p + 1)
Q
it is true that
1
/ [uV AuVul|dzr < g/ |V Aul?da + —/ u?|Vu|2dzx
Q 2 Ja 2¢ Jo
< g/ IV Auftdz + Ce([[ullSs +1).
Q

Similarly, from
2. 12 ¢ 2
v |Vul*dz < 1 | [VAulde + P(llullg + [[9]]0),
Q Q
we obtain

2
/}vVAuVukle g/ IVAude—l——z/ v?|Vu|2da
Q 2 Ja ¢q* Ja

<¢ /Q IV Au2dz + P([fullgn + [ollin)-

The other integrals are similarly estimated. By noting that

D 1
/[Au}deg ——ﬁ/ |VAu|2d:c+—/ |Vul|? da,
Q 2 Ja 2Dy Jo

hence, we have

d eD,
6d—tIlAU||%z + - IVAulLz + <l Aullzz < P(llullg + o]l )

< P(lluollzr + llvoll ),
with the aid of (4.1). Solving this,
(19) lAu@IZ: < el Auolze + Plluolln + oollz), 0<¢<T,

Meanwhile, operate V to the second equation of (OR) and multiply it by VAv, and integrate the
product in €. Then,

d 1
S 1AVIL: + Dy [V A3 + 2] Av]F, < o 1Vullze.
u
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Solving this,
(410)  JAe@IRs < e vl + Ol (fuollye + follf) +1}, 0<t<T.
Combining (4.1), (4.9) and (4.10), we have (4.8). O

By the estimate (4.1) we have a global existence of solutions.

Theorem 4.3. Let (ug,vo) € H%(Q) with uo € [g,1] and vo € [0,1]. Then (OR) admits a unique
global solution (u,v) such that

(u,v) € C([0,00); HX(2)) NC'((0, 00); H'(2)) N C((0,00); H(€2)).
In addition, u and v satisfy u € [g,1] and v € [0,1].
Proof. Theorem 3.1 admits the local solution U such that

(u,v) € C(10, T, ); HX(Q)) N C*((0,7;]; H'(2)) N C((0, T7]; HA (),

where T, is determined by 7 = ||(uo,0)|lwz- Then, by Theorem 4.2 we have ||(u(t),v(t))llm <
C(r+1) (=), 0 <t <T,. Consider now (OR) with an initial function (u(Zr),v(Z;)). Theorem 3.1
admits an extension of solution beyond T} to Ty + T;s. By the uniqueness of solution this shows that
I(w(®),v(t))||ge <7, 0 <t <T,+T. This allows the solution to exist until 75 + 21;. Repeating this
argument, we obtain the global existence of solution. O

5. Exponential Attractor.
The initial value (uo,vp) belongs to K, where K is a set of initial values
K= {(uo,vo) e H;uo € [g,1], vo € [0,1]}.

Theorem 4.3 shows that (5.1) is well-posed in K. Therefore, a continuous semigroup {S(t) :
(ug,v0) € K + (u(t),v(t))}e>0 is generated by (5.1), and a dynamical system ({S(t)}e>0, K) is
defined.

For the dynamical system ({S(t)};>0, K) the existence of absorbing set is shown.

Theorem 5.1. Let B be an arbitrary bounded set in K. Then, there exist a time tg and a universal
constant R for B such that

sup |[S(t)(uo,v0)|lme < R forall t=>1p.
(UO,UO)GB

Therefore, a compact set B = {(u,v) € Hi; [|[(w,0)|lge < R} in H' is an absorbing set for the
dynamical system ({S(t)}t>0, K).

Proof. Let (uo,v0) € B and (u(t),v(t)) = S(t)(uo, vo). By (4.8) it holds that

[l(u(t), vl < Ce || Au(s), v(s))llLe + P(ll(u(s),v(s)llg), t=s=0.
But, from (4.1) we have

(u(t), v(t)llge < Ce™ | Alu(s), v(s) > + el (uo, vo)llm ), ¢ >8>0
Choose so = max {6~ log | (uo, vo)||m , 0}. Then, we obtain

(u(t), v(®))lime < Cle*[|A(ulso), v(s0))llnz + 1), ¢=s0>0.
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Choose also tg = max{6~'log || A(u(so), v(s0))|lm, s0}. Then, putting R = 2C and t5 = to, we obtain
(), v(®)lle < R, > tp.

Thus, we have proved the theorem. 1

Hence, by virtue of [7, Chap. I, Theorem 1.1], the w-limit set A = w(B) is a global attractor for
({S(t)}+>0, K). Set now
> .
x=JswB |

t>in

where i5 is a number satisfying S(t)B C B for t > tz. The set X is a compact subset of H!

with A € X C B, and is an absorbing and positively invariant set for ({S(t )}t>0, K). Therefore to

investigate the large time behavior of solution it suffices to consider a dynamical system ({5 (t) }e>0, X).
By using Proposition 2.2, we obtain the following theorem:

Theorem 5.2. The dynamical system ({S(t)}1>0,X) admits an ezponential attractor M.

Proof. Let H = H'(Q2). We consider a semilinear equation in H:

au
— 4+ AU = F(U), 0<t< oo,
(5.1) dt )
U(0) = Uy,
. . . _ _DuA _’_ 1 0 . .
where U = (u,v). The linear operator A is defined as A = 0 _DyA+ 1) with the domain

D(A) = H3,(Q), and F(U) is a nonlinear operator from D(A) to H such that

1 U —q
F(U) = u+g{u(1‘u)_(fv+¢u>r+q}

U

Let us check the conditions (F) and (G) in Proposition 2.2. Let Uy € X. Since ||A2U0HH < R, we
have HA2 U)|lz < R for every t > 0. In view of (3.1) we obtain

IEU) = FO)|lir < CP|A2U || + |AZT || ) (| A2 U | + | AT |1y + D)I[A% (U — 0|
< Cp|A2(U -~ T)|n, U,U€X.

Therefore, the condition (F) is fulfilled.
Next, we check the condition (G). Fix T' > 0 arbitrarily. We note that

IG(t, Uo) = G(s, Uo)lli < [1S(6)Uo = S(t)Tollr + |S()To — S ()Tl rr-
For Uy, Uy € X, let W(t) = St)Uy — S(t)Up, 0 < t < T. Obviously W(t) is a solution to the problem

- dd_VtV + AW = F(S()Uy) — F(S®)Ty), 0<t<T,

W(0) = Wy,

where Wy = Uy — Up. Multiplying W the equation of (5.2), we have

2dt“W”H +IATW T = (F(S(6)U0) — F(S®)T0), W)t < Crll ASW |1 |W .
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Solving this differential inequality, we have ||[W()|g < e“|Wollg < Cr||Woll#, namely,

ISt Uo — SE)Uo||zr < Or||Uo — ol -

By a quite similar estimate to (3.1) we can show

IF(SOT)a < C(1AZS®Tolla +1)° < Cr, 20,

Therefore, we observe that for 0 < s <t <T

as

IS0 - S@)0olla < [ |G )0 ar

/ |AS(r) Dol dr + / | E(S(r)T0) | rdr

< sup (VFIAS()Dollx) / Lt sup |P(SEI0 [ dr

TE[8,1] \/_ T€[s,t]
< CrVt— s+ Cg(t—s)
< CprVt—s.
Thus the condition (G) is also fulfilled. O
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