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Asymptotic Behavior
of Reaction-Diffusion-Advection Systems

Koichi Osaki*

Abstract. Two reaction-diffusion-advection systems: Mikhailov-Hildebrand-Ertl model [1] and Mimura-
Tsujikawa model [2] are considered. As an example of reaction-diffusion-advection systems, Mikhailov-Hildebrand-
Ertl model in R? is adopted, and then the method of showing the global existence: semigroup method and a
priori estimate is introduced. As another topic of the asymptotic behavior of reaction-diffusion-advection sys-
tems, the collapse of solution is treated. For Mimura-Tsujikawa model the possibility of occurrence of collapse
due to the relation cross-diffusion and growth orders is discussed.
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1. Introduction.

In this paper we consider the following type of reaction-diffusion-advection systems:

0
5% = Au— xV{V(u)Vv} + f(u), in Qx(0,0c0),
(1.1)

0
6_: = alAv+g(u,v) in Q x (0,00),
where Q is a domain in R?, and x and « are positive constants. The function V' (u) of the advection
term —xV{V (u)Vuv} denotes a cross-diffusion effect of u by the gradient of v, and f(u) and g(u,v)
denote the reactions between components v and v or simply growth of v and v. We shall consider
the functions as:

(1.2) V(u)=u(l—u), flu)=1—-u, g(u,v) =v(u+v-1)(1—v)
(1.3) V(u) =u, f(u) =1-wu, g(u,v) = Bu—1v,

where 3 and <y are positive constants. The system (1.1) with (1.2) is equivalent to Mikhailov-
Hildebrand-Ertl model [1] in terms of the method of showing the global existence essentially. The
system (1.1) with (1.3) is Mimura-Tsujikawa model [2] having a linear decay growth term.

The objective of this paper is to introduce the treatment of showing the global existence of
reaction-diffusion-advection systems: semigroup method and a priori estimate by adopting Mikhailov-
Hildebrand-Ertl model as one of examples of the systems. As a symbolic asymptotic behavior
of reaction-diffusion-advection systems, we consider also collapse of solution by adopting Mimura-
Tsujikawa model. Collapse means here that the function u(z,t) has a delta function singularity in
a finite time because of the effect of negative diffusion due to the advection term. For no growth
case, that is, Keller-Segel model: V(u) = u, f(u) = 0, g(u,v) = fu — v, it is well-known that
collapse occurs for sufficiently large x > 0 (results on the local and global existence and collapse for
Keller-Segel model e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11]). On the other hand, for a quadratic decay growth
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case [12]: V(u) = u, f(u) = u(l — u), g(u,v) = Bu — yv or a cross-diffusion with prevention of over-
crowding case [13}: V(u) = u(l —u), f(u) = 0, g(u,v) = Bu — yv the global existence were assured
for any x > 0. Hence, to investigate the effect of cross-diffusion and growth orders for the collapse
may be important to know the asymptotic behavior of reaction-diffusion-advection systems. In this
paper, by our results of Mikhailov-Hildebrand-Ertl model we observe that the case: V(u) = u(1—u),
f(u) =1—u, g(u,v) = Bu— yv assure the global existence for any x > 0. We treat also the Mimura-
Tsujikawa model with a linear decay growth case (1.3), and discuss on the possibility of occurrence
of the collapse for sufficiently large x > 0.

The organization of this paper is as follows. In Section 2 we shall treat Mikhailov-Hildebrand-Ertl
model in the spatial domain R? and show the global existence of solutions. Section 3 is devoted to
the discussion on collapse of Mimura-Tsujikawa model.

2. Global Solution to Mikhailov-Hildebrand-Ertl Model.

Let us consider a following reaction-diffusion-advection system which was proposed by Hildebrand,
Kuperman, Wio, Mikhailov and Ertl [1] (see also [14]):
(0
B_i; = alAu + bV{u(l — u)Vx(v)}
—cex@Wy —du+ f(1—u) in R? x (0,00),
(2.1)

%—t— = gAv+hv(u+v—~ D(1-v) in R2?x (0,00),

| w(z,0) = uo(z), v(z,0) =wvo(z) in RZ

Here, u and v are unknown functions with 0 < v <1 and 0 < v < 1. The coefficients a, b, c,d, f, g, h
and k are positive constants, and x(v) is a real-valued smooth function on v € [0,1] with x/(v) <0
(in [1], x(v) = $v® — %v2 is introduced).

The system (2.1) is a model for a nonequilibrium self-organization process in surface chemical
reaction of microreactors with submicrometer and nanometer sizes. Typical example of the reaction
is the oxidation of CO on Pt(110) surface (cf. {15]). Then, the functions v and v denote the adsor-
bate coverage of CO and a continuous order parameter of the surface structural state of Pt(110),
respectively. The advection term dV{u(1 — u)Vx(v)} of the first equation shows that CO molecules
flow on the surface by the gradient of local potential x(v) with a rate 1 — u. The reaction term
hv(u 4+ v — 1)(1 — v) of the second equation indicates that the system has two stable uniform states
v =0,1 and an unstable uniform state v =1 — .

In [16], Tsujikawa and Yagi treated the system in a bounded domain with C* boundary, imposed
Neumann boundary conditions, and then prove the existence of global solutions and an exponential
attractor (cf. [17] for periodic boundary conditions). Exponential attractor is a compact positively
invariant set with the finite fractal dimension in the (infinite dimensioal) phase space, which includes
the global attractor, and attracts every trajectory in an exponential rate. (As for precise definition
and examples of exponential attractor, see Eden, Foias, Nicolaenko and Temam [18]). The system
shows various spatial-temporal patterns [15] (cf. numerical results [19]), so, we may consider in terms
of the existence of exponential attractor that such patterns are phenomenon of finite degree of freedom
even if they seem to be complicated.

In [1, 14, 20] the existence and stability of stationary spots and traveling front solutions to (2.1)
are discussed, and also the interface equation is introduced in the domain R2. So, we should consider
the case R? and show the global existence of (2.1) (exponential attractor does not exist in a usual
function space such as L2(R?), in fact, a norm of some traveling solution may diverge to infinity).
Since x/(v) < 0, there exist only three stationary solutions such that stable uniform states:

N N f
(S) (@,9) = (To,0), (41,1), 4 = m,

=0,1;
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and an unstable uniform state:

B f ) )
(US) (“? U) = (u*,v*), Us = cekx(1—ax) +d+ fu Uy = 1 — Uy.

The domain is unbounded, it then may be natural to impose on (2.1) a boundary condition of
lim|g| 00 (1, v) = (%, 7). Then, by changing u and v as

(2.2) u=14+u, and v="0+uv,
an evolution equation of perturbation (up,v,) around (%,d) is derived:
[ Ouy .
— = alu, + bV{u(l — u)Vx(v)} — (ce®*®) +d + flu,

ot :
+cii(eFX®) — efx(®)) in  R? x (0, 00),
P) 1 &

a—vt =gAv, + hv(u+v—1)(1—v) in R? x (0,00),

L up(2,0) = upo(x), vp(x,0) =vpo(z) in R?

where u, v, % and ¥ are defined in (S) or (US) and (2.2).
As for the case (S), the author, Takei and Tsujikawa show the global existence [21]. In this paper,
we treat the case (US). Then, it is obtained that

Theorem 2.1. Let (up0,vp0) € H(R?) x H?(R?) with the initial condition:
(Bo) 0<d+upg(z)<1l, 0<T+uyo(z) <1 in R

Then, there exists a unique global solution (up,vp) to (P) which is an evolution equation of around
the unstable uniform state (US) such that

(up, up) € C([0,00); H'(R?) x H*(R?)) N C}((0,00); H'(R?) x H*(R?))
NC((0,00); H3(R?) x H*(R?)).

In addition, the global solution satisfies on R? x [0, 00)
(B) 0<td+up(z,t) <1, 0L+ wvp(x,t) < 1.

Local Solutions.
We shall show the local existence of solutions to (P). We set (P) to an abstract evolution equation
in a function space and by using semigroup method obtain the local existence.
Consider an initial value problem of a semilinear abstract evolution equation:
du
— +AU=F({U), 0<t<T,
(2.3) dt
U0) =
in a Banach space X. The function U is an unknown function, and A is a closed linear operator in
X which satisfies the condition

M
Al +1°

(24) =47 < A¢ X,

with X' = {A € C;|arg A\]| < ¢}, 0 < ¢ < %, and M > 0 is a constant. The initial value Up is in D(A*)
with the estimate

(2.5) |A%Tol| < R,
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where a € [0,1) is some exponent and R > 0 is a constant. These assumptions allow to generate an
analytic semigroup e *4 on X and define a function of integral form

{2(U)}(t) = e ™ Up + /0 t e~ D4RV (s))ds.

If some Lipschitz condition for the nonlinear function F is satisfied, then it is shown that the function
®(U) has a unique fixed point, hence, we obtain the local existence (e.g. [22, 23, 24, 25, 26]). But,
for our reaction-diffusion-advection system the following Lipschitz condition of [27] may be easily
verified: the function F' : D(A") — X is a given Lipschitz continuous function satisfying

(2:6) I1FU) - F(V)lx < p(l1A*Ullx + 1A%V x)
x{1A"(U = V)llx + (1A"Ul|x + A"V [ x)lA*(U = V)llx},

where U, V € D(A") with some exponent 7 € [, 1) and some increasing continuous function p().

Proposition 2.2. ([27, Theorem 3.1]) Under the conditions (2.4), (2.5) and (2.6), there exists a
unique local solution to (2.3) in the space

Ue C([O,TR], D(Aa)) N Cl((Oa TR]; X) N C((OaTRL D(A)>a
t'=oU € B((0,Tr]; D(A)),

where T > 0 is determined by R.

Let us set (P) to an abstract evolution equation in X:

®) dt

~ ﬂ+AU=F(U), 0<t< o0,
U(0) = Up.

Here, U = <up ) and A = (—aA td+f 0 ) with the domain D(A). The initial value

Up 0 —gA+1
Up = (up,O) is in D(A%), a € [0,1), and F(U) is a nonlinear operator from D(A") to X, 7 € [, 1),
such th:tz;’o
FU) = <bV{u(1 — w)VX(Rev)} — ceFXRe)qy, 4 ¢ij(ebX®) — e’“i(Re”)))
vp + hv(u+v —1)(1 - v)

with u = @ + u, and v = & + v,, where x(Rev) is some smooth extension of x(Rewv) for v € C.

The existence theorem of local solutions to (P) is derived.

Theorem 2.3. Assume that (up0,vp0) € HY(R%) x H2(R?) and ||(up,0,vp0)llgixm> < R, where R
is some number. Let X = L2(R?) x H'(R?), D(A) = H*(R?) x H3(R?). Then, there exists a unique

local solution (up,vp) to (P) such that
(up, vp) € C((0, Tr); H'(R?) x H*(R*)) N C*((0, Tr]; X) N C((0, Tr); D(A4))
with Tr > 0 determined by R.

Sketch of Proof. Let us verify the conditions of Proposition 2.2. The operator A from D(A) to X
satisfies (2.4). We choose o = 1/2. This shows that D(A%) = H'(R?) x H?(R?), that is, (2.5) is
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sagisﬁed. For5 (2.6) we here mention only the advection term. Choosing 7 = 3/4, that is, D(AM) =
H2(R?) x H2(R?), we obtain
IV {u(l = u) — w(l - w)}VX(Rev)]l| 2
< 11~ 2| (up — ) VE(Rev) 11 + [[ttp + ) (tp — ) VE(Re )]
< (lup +wpll g + Dllwp — wpll 51X Re v)V (Re vp) |
1 1 1 1
< (”up + wp”?{l““p -+ wp”;% + 1)”“? - wp”?{l”“p - wp“;I%P(””p”HZ)
< pllvpll 2 ){ (llup + wpllr + 1) [Jup — 'wp”H% + [lup + wp||Hg llup — wpllra }
< pllupll g + llwpll g + llvpllar2)
X {llwp —wpll 13 + (lupll ;3 + llwpll 3 + Dllup — wpllan},

and

IV [u(l - ) V{X(Rev) - X(Re )12 < Clllupl’ 5 +1)
x [I{X (Rev) — X' (Re 2)}V(Re vp) |l + IX'(Re 2) V (vp — 2) || ]
< Plluplles + [[vpll ez + ”zp“H2)(“upHHg + Dllvp — 2|l g2
The other terms are similarly estimated, the condition (2.6) is verified. Thus, the theorem is proved.

O

By considering the higher regularity case for the local solution we obtain the theorem of existence
of local solution. But similar arguments as the proof of [21, Theorem 3.4.] derive the following
theorem, we then omit the proof and only give the statement:

Theorem 2.4. Let (up,up0) € H*(R?) x H2(R?) with (Bo) and ||(up,0,vp0)| m1xzz < R, where R
is some number. Then, there exists a unique local solution (up,vp) to (P) such that

(9, ) € ([0, Tils HH(R?) x HE(R?)) NCY(0, Ty ' (R?) x H2(R?))
NC((0, Tr); H*(R?) x HY(R?)),
and satisfying (B) on R? x [0,Tg]. Here, Tr > 0 is determined by R.

Global Solutions. We shall construct several a priori estimates for the local solutions and then
show the global existence of solutions to (P) with (US).

Proposition 2.5. Let (up,vp) be any local solution to (P) with (US) which belongs to the function
space

(up,vp) € C([0,T); H'(R?) x H*(R?)) NC*((0,T); H'(R?) x H*(R?))
NC((0,T); H*(R?) x H*(R?)).

Then, there exists some increasing continuous function p(-) independent of u, and vy, such that

(2.7) [ (up(8), vp ()| scrrs < p(E+ [(up0, vp0)llmrxcms), 0<t<T.

Proof. In the proof, we use another expression of the second equation of (P) with (US):
Ov.

(2.8) ﬁtg = gAv, — vp + P(up,vp),

P(up,vp) =vp+hv(u+v—1)(1—v)
=hv(l =v)up + {1+ v(1—v)}vy].
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Step 1. Multiply (2.8) by v, and integrate the product in R2. From (B), we obtain

1d
2.9 1d [ 2 2 2 2
(2.9) 2dt/szpd:c+g‘[Rz|va| da:SC(/l;zupdaz—F/Rvadx).

Multiply next (2.8) by Av, and integrate the product in R%. Then,

ld 2 2 g
S— | |V dm—{—/A d+/ Vu,|? d <_/ Av,|? 2 2
2dt/Rzl Dl g Rz[ vp|“ dx IR2l vp|“dz < 5 R2| vp|“dx +C Rzupdcﬁ— Rgvpdw X

It follows that

d
(2.10) ——/ |va\2dx+g/ |Av,,|2dx+2/ |Vup|*dz < C /uf,d:c—i—/ vidz ).
dt R2 R2 R2 R2 R2

Multiply again (2.8) by A%v, and integrate the product in R?. Then,
2dt/ | Av,|? dz +g/ |V Av,|? da +/ |Av,|?de < 2 / |V Avp|? de + —/ |VP%dz.

By (B) it is easy to see that |[VP|?2 < C (IVupl2 + IvaF). Therefore, we obtain

d
(2.11) —/ |Av,|? dz + gf |V Ay |? dz + Zf |Av,|?dz < C / \Vup|>dz + [ |Vu,)Pdz ).
dt R2 R2 R2 R2 R2
Meanwhile, multiply the first equation of (P) by u, and integrate the product in R2. Then,

1d

2 2 kx(1 2
30 Rzupdm+a/Rz]Vup| dzx + (ce X()+d+f)/Rzupdx

< —b/ u(1 — u)x' (v)Vu,Vuydz + cﬁ/ (efx(@) e'“X(”))upda:
R2 R2

a 2 2 2 2
<— -
< Z/RZIVUIA d:n-l—C(/Rzupdm-i-/Rz [Vup| d:c—f—/Rz'updm>

So, we have

d 2 2 2 / 2 / 2
. — < .
(2.12) i Az usdz + a'/m2 |Vup|®dz < C (/1112 uydz + o |Vvp|“ dz + - vydz

By adding (2.9), (2.10) and (2.11) to (2.12) multiplied a large constant we obtain that with some
constant ¢ > 0

(2.13) lup(OlZ2 + lvp ()l < Ce™ | Avpollz2 +plt + llupollze + lvpollm), 0<t<T.

Step 2. Operate VA to (2.8), take the inner product with VAuv, and integrate the product in R2.
Then,

2dt/ |VAvpl2dm+g/ | A%y, |? d:n—l—/ |V Av,|? de < Z / | A%, | do + — f |AP|? dz.
Thanks to (B) it is easily verified that

AP < C (18] + |Aup | + [Tupl* + [Ty [T
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Moreover, we obtain
(214) L, (4l + 19017) do < oplla + 190l < Bl

and by noting that [, IVup|2 dz < %fRz (|Aup|2 + lup|2) dz,

215) [ [Vl V5% do < [V [Tl

< pllupllz2 + “UPHHz)“Up”iz < CllA|(7e + p(luplizs + vpllaz)-

Therefore, it follows that

d
(2.16) d—/ |VAUp(2dm+g/ |A21)p!2d:c+2/ |V Av,|* dz
2 R2 R2 R2

< O | Aupll7a +p(llupllz2 + llopllz2)-

Meanwhile, multiply the first equation of (P) by Au, and integrate the product in R2. Then,

li/ IVup|2dm+a/ |Aup|2d:v+(ce’°X(1)+d+f)/ [V, |? de
2dt Jpe R2 R2

< —ck/ X! (v)u, Vi, Vupda — b/ AupV {u(l —u)Vx(v)} dz
R2 R2
—cil / {FX®) _ XY Ay dy
R2

2
< E/ lAup|2d$-|-§—/ |V{u(1—u)Vx(v)}|2dm
4 R2 a Jr2
N (cexM) 4 d 4 f

£ D [ (9upl o+ plloglin)

In addition, by similar estimates to (2.14) and (2.15) we have

2
L1 - VX de < gz [ 1Auwf® do s + ol

It then follows that

d
%/ IVup|2da:+a/ |Au,,|2dx+(cekx<1)+d+f)/ \Vup|* dz < p(|lupllzz + l[vpll2)-
R? R2 R2

35

We add this to (2.16) multiplied a small positive constant. Then, it is indicated from (2.13) that with

some constant § > 0

lup(@) I3 + lop(@)lIFs < Ce™®{[[Vupollzs + [VAvpol 72} + p(t + llupollzz + lvpollaz), 0<E<T.

Hence, we have proved the estimate (2.7).

g

By Proposition 2.5, we can give the proof of global existence, Theorem 2.1. But, since quite

similar arguments as [21, Proof of Theorem 1.1.] assure our global existence, we omit the proof.
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3. Chemotactic Collapse of Mimura-Tsujikawa Model.

Let us assume that the domain © C R? is a bounded with smooth boundary and X is a given

positive constant. By using the same method of the previous sections we can show the existence of
global solution to

(0
5’? =Au—xV{u(l-u)Vu}+1—u in Qx(0,00),
Ov .
(3.1 ) —éﬁ:ozAv+,8u—fyv in Qx(0,00),
g%:%:o on 99 x (0,00),
\ u’(m70) = ’U,o(m), ’U(LI},O) = v()(.’L') in Q,

even if x is sufficiently large (indeed, (B) is derived from (Bp), cf. [21, Theorem 3.4]). Meanwhile,
Hillen and Painter treated the system consisted of:

Z—;‘ — Au—xV{u(l—wVs} in Qx (0,00),
and the same second equation, boundary and initial conditions as of (3.1), and showed the bounded-
ness of solution, and then obtained the global existence for any x > 0 [13]. This system was introduced
as a chemotaxis model with prevention of overcrowding cross diffusion. Then, u(z,t) and v(z,t) de-
note the population density of biological individuals and the concentration of chemical substance at
a position z € 2 and a time ¢ € [0, o), respectively. Chemotaxis is the directed movement in a sense
that the biological individuals have a tendency to move toward higher concentration of the chemical
substance. As the chemotaxis effect the system has the advection term of the form negative diffusion.
We then observe that the prevention of overcrowding cross-diffusion has some role of avoiding collapse
even if the system has a linear decay or no growth term.

Let us consider the following reaction-diffusion-advection system having a simpler advection term:

%—1: = Au— xV(uVv) + f(u) in Qx(0,00),
and the same second equation, boundary and initial conditions as of (3.1). This system is Mimura-
Tsujikawa model [2].

If the growth term f(u) is a quadratic decay function such as f(u) = u(l — u), then the global
existence is assured and also the existence of exponential attractor [12] (as for other results on expo-
nential attractor and pattern formation for Mimura-Tsujikawa model, refer [2, 28, 29, 30, 31]). We
here note that it is well-known that if no growth term, that is, f(u) = 0, the system is equivalent to
Keller-Segel model, in which chemotactic collapse occurs for sufficiently large x > 0 (on the local and
global existence and collapse for Keller-Segel model, refer [3, 4, 5, 6, 7, 8, 9, 10]).

Here, let us consider the problem for the following system consisted of

ou _

5 Au—xV(uVv)+1—u in Qx (0,00),

which has a simple advection term and a linear decay growth, and the same second equation, boundary
and initial conditions as of (3.1): does collapse occur or not for sufficiently large chemotactic coefficient
x? This is an open problem which we here does not treat directly. The similar arguments as for Keller-
Segel model {e.g. [5]) permit to reduce the second equation to 0 = Av + u — 1 approximately for a
case where ]%[ fQ uodz = 1, |Q| being the measure of , « is large and 8 = v = 1. Then, to give an
observation on collapse of Mimura-Tsujikawa model with a linear decay growth we shall consider the
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following system:

( Ou .
EzzAu—xV(qu)—i-l—u in Qx(0,00),
0=Av+u—1 in Qx(0,00),
(3.2) S
ou _ v _ 0 0 x (0, 00)
on _on ¢ (0, 00),
L u(z,0) = uo(z), v(z,0) =vo(z) in Q.

Theorem 3.1. Let the domain ) be a ball with the radius 1, of which the center is the origin of R2.
Then, for sufficiently large chemotactic coefficient x > 0 some radially symmetric solution u(z,t) to
(3.2) blows up in a finite time, that is, collapse can occur in the system (3.2).

Proof. By simulating the result of Jiger and Luckhaus [5], we can construct the subsolution of u
which blows up at the center of ball.
Introduce a function

VP
U(t,p)z/B (u—l)da::/o (u—1)rdr, r=lz|, 0<p<1,
VP

B ={z €R? |z[ < \/p}.
Then by integrating the first equation of (3.2) we obtain

Lﬁ{%% — Au+ XV (uVv) -(1_u)}da,

oU . 89U U2
= 4 —(x = 1)U =0
ot a7 Xa, (x-1U

with boundary conditions U(t,0) = U(¢,1) = 0. Jéger and Luckhaus constructed a subsolution W,
with parameters 0 < p; < p2 < 1, a, b and pp such that

a
—ﬁ3,0<p<m,
W(t, p) T
t7p = 2
o —
’Y(l—P—%t), pr<p<l,

where 7 = pg — bt and v = (1 — p1 — (p2 — /71)2/p2)—1 ;lc—”_pf;g, with boundary conditions W (¢,0) =
W (t,1) = 0. Indeed, we obtain

ow *wW oW?
—4p—7 =X
ot op dp

-(x—-1HW

3b7‘2 T3
{p+73+2(4——ax)zp+—7_3)2—(x—1)}w', 0<p<p1,

2bp3
{PoJr 8
p1 p2(l—p2)

2a
].——p2

+1—x<1— )}W;p1Sp<l

Choosing the parameters satisfying that bp3 sufficiently small, @ small as 4—ay > 0 and 1— 12‘22 >0,
and y sufficiently large, then the coefficients of W of the right hand side are negative, hence, provided
with the initial functions as W(0, p) < U(0, p), the comparison is possible. This implies that collapse

occurs at the center of ). O
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