On The Noetherian Ideal Theory

Hisao IZUMI

Introduction. The édditive ideal theory of the noncommutative ring with the aécending chain
condition (a.c.c.) for two-sided ideals has been studied by many authors. Recently, K. Lt Che\y (4]
has obtained new results. ‘

In this paper we have two purposes. One of them is to examine principal theorems, obtained by
Chew and by oéher authors, on the following conditions which are weaker than the a.c.c.:

(F). Every ideal of a ring R is represented as an intersection of a finite number of (\-irreducible
ideals.

(K). For any elements a and b, (a)(b) is a finitely generated ideal. (K. Murata (6] ).

The other is to obtain new conditions necessary and sufficent for a ring R with (F) and (K) to
have the property of making any ideal of R be represented as an intersection of a finite number of
primary ideals. In such a case it is said in this paper that a ring R has the Noetherian ideal theory.

In §1, on the condition (F) we shall examine ( (4] 3.3. Theorem). In §2, on the conditions (F)
and (K) we shall examine theorems in (2], (3] and (4], In §3, we shall seek for the conditions which
are equivalent to those that a ring R with (F) and (K) has the Noetherian ideal theory.

§1. We use R as a noncommutative ring which has not necessarily a unit element, Unless

especially mentioned, A, B,----- mean ideals of R and a, b,:----- , X, ¥, z mean elements. The term
“jdeal” always means “two-sided ideal” and (x, y,------ ) means the ideal generated by elements x,
P,yreenen . Weset A: B={x; (x)BC A}, but we put down instead of 4: (x) 4:x for a simplicity.

Definition 1.1. An element x is said not to be (right) prime to A (nrp to A) if A: x+ A.
‘Otherwise x is said o be (right) prime to A (rp to A). An ideal B is said fo be nrp to A if every
element x in B is nrp to A.

Definition 1.2. The set { x| (x)® C A for some positive integer n}, denoted by A, is called the
nilpotent radical of A. It is easily proved that 4 is ah ideal. Further an ideal N {P| P is a prime
divisor of A4}, denoted by A, is called the McCoy’s radical of A.

Definition 1.3. An ideal A4 is said to be (right) primary with respect to the nilpotent (resp.
McCoy’s) radical if A:x =+ A implies x © A (resp. x € A).

We shall weaken the concept of the so-called Noetherian ideal theory as follows :

Definition 1.4. R is said to have the Noetherian ideal theory if every ideal of R is represented as
an intersection of a finite number. of primary ideals.

Definition 1.5. The set {x | (A:x) N Y=A implies Y=A4}, denoted by ter (4), is called the
tertiary radical of A. A is said to be tertiary if A:x + A implies x € ter(A4). It is well known that for
any ideal A, ter(A) is a ideal.

Clearly a N-irreducible ideal is tertiary. Next, we shall treat the nilpotent radical as the radical of
ideals and examine ((4), 3.3. Theorem).

Theorem 1.1, Let the radical of ideals be the nilpotent radical. In R with (F) the following
statements are equivalent to one another.
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(1). R has the Noetherian ideal theory.
(2). Any N-irreducible ideal is primary.
(3). For any ideal A and for any element b, there exists a positive integer n such that A N B»"c
A(b).
(4). For any ideal A, ter(A)C A.
(5). Any teriary ideal is a primary ideal.
Furthermore, the following statement (6) implies each of the statements (1)—(5).
(6). For any ideal A and for any element b, there exists a positive integer n such that
A=(A+®B)")N(A: (B)").
Proof. (1)&=(2) : This is evident from (F).
(1)==(3) : If we mind that b £ 4 implies ()" C A for some positive integer n, this is proved im
a way similar to McCarthy (1],
(3)==>(4) : This is proved in a way similar to the proof of ((4], 3.1. Lemma).
@)=(): This is evident.
(5)==(1) : From (F) we have A=Q1 N Q2 N---N Qn where each Q; is N-irreducible, hence Q: is
tertiary and from (5) Q» is primary.
(6)==(3) : This is proved in a way similar to the proof of ((4), 3.2. Lemma).
Corollary. In R with (F) and (K), we have ;he' following :
(i). Statemente (1)—(6) in Theorem 1.1 are equivalent to ene another.
(ii). In Theorem 1.1, we can replace‘ (3) (resp.” (6))-with following (37) (resp. (67)) :
(3”). For any ideal A, for any finitely generated ideal N, and for any positive integer k, there
exists a positive integer n such that AN N™ C AN,
(6”). For any ideal A and any finitely generated ideal N, there exists a positive integer n such that
A=(A+N")N(A:N").
(iii) Furthermore, if R has the Noetherian ideal theory then for any finitely. generated ideal N there
exists a positive integer n such that N* N (0: N*)=0.
When we tfeat the McCoy’s radical as the radical of ideals, the following theorem holds.
Theorem 1.2. Let the radical of ideals be the McCoy's one. In R with (F) the following statements
are equivalent to one another.
‘ (1). R has the Noetherian ideal theory.
(2). Any N -irreducible ideal is primary.
(3). For any ideals A and B, there exists an ideal B’ such thet B= B and AN B’ C AB.
(4). For any ideal A, ter (4) C 4.
(5). Any tertiary ideal is primary.
Furthermore, the following statement (6) implies each of the statements (1)—(5).
(6). For any ideals A and B, there exists an ideal B' such that l77=1§', B DB and A= (A+B) "
(A: B’).
Proof. (1)&(2) : This is evident.
(1)=—(3) : From (1), AB=an1 Qr where Qi is primary (k=1,---, n), For each k, AB C Qx,
then 4 C Qi or BCOr. We may assume that AC Qi (i=1,--, r) and that BCQ;(j=r+1,--, n). Now
let B'=B <jfj,9{ ), then B'=BN (jigj) =B, B CBand B gjﬁgj. Thus ANB' < (iélQi) m(ﬁg?
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=AB.
(3)==(2) : Let 4 be N-irreducible and let 4 be not primary, then there exists an element b such
that 4:bS= A4 and b & 4. From (3), there exists an ideal B’ such that B'=(5) and (4:5) N B Z (A:b) «

~_-
(b) S A. Hence A =(A+B) N (A:b). But A:b=A4 and A+B"C A. For if A+B' C A, then A+B C

A hence b€ (b)=5 gZ?B" C A. Thus b € 4. This is a contradiction.

(3)==(4) : Let x be an element such that (4: x) N B=A implies B=A for any ideal B. From (3)
there exists an ideal X’ such that X”=G’5 and A=(4:x) N (A+X"). Then A+X’ A and hence X' C 4.
Thus X’ C A and so we have (x) C 4.

(4)=—=(5) and (5)==(1) : These are evident.

(6)==(3) : For any ideals A and B, from (6) there exists an ideal B’ such that B'C B, B'=B
and AB=(AB+B') N (AB:B')Y D (AB+B) N (AB:B) DB N A.

§2. In this section we assume the condition (K) mentioned in the introduction. Of course if R
has the a.c.c., then R has (F) and (K). Now we shall show that in R with (K) the nilpotent radical
coincides with the McCoy’s one.

Lemma 2.1. For any ideal A, A= A if and only if A is a semi prime ideal.

Proof. If A= A and 4 is not semi prime, there exists an element » such that & 4 and (b)2 CA4.
But b A=4. This is a contradiction. Conversely if 4 is semi prime and 4 € A then there exists a
positive integer n such that (6)" C 4. From the assumption of 4, b€ 4.

Theorem 2.1. For any ideal A, A=A if and only if A=A.

Proof. “if part” is evident. As to “only if part” A4 is semi prime from Lemma 2.1 Then 4 is an
intersection of prime ideals. On the other hand, 4 C A= {P | P covers all primes containing A }.
Therefore we obtain easily =4,

Lemma 2.2. In R with (K), for any ideal A, A=A.

Proof. Easily AC A. Conversely, if x € /j, then (x)» C 4 for some positive integer n. From (K),
(x)" is finitely generated, hence ((x)")™ C A for some positive integer m. Since (x)"™ C A, x € 4.

Corollary. In R with (K), for any ideal A A=A.

Definition 2.1. An 1deal A is called a (right)'primal ideal if the set A*={x x is nrp to A} is an
ideal.

Henceforth, we shall denote the radical of A with 4, and use A* in this sense.

Definition 2.3. A set M of elements of R is called an m-system if for any elements x, y in M
there exists an element » in R such that xry € M. The null set is also, by the definition, an m-system.

Lemma 2.3. In R with (K), for any tertiary ideal A the set M={x x is rp to A} is an m-system.

Proof. We may assume that M= ¢. We shall denote the complement of M with M°. Since a
tertiary ideal is primal, M° is an ideal. If M is not an m-system, there exist two elements x, yin M
such that xRy C M°. From ((3J, §8, Lemma 1) there exists an element z in M such that (@) () < Me,
From (K) we have (z)(y)=(t1,-+, tx), then for each i #; is nrp to A, hence A:xti =2 A. Therefore
A: (@)W )=A: (1, tn):iﬁ-i(A 1t;) =2 A by the tertiarity of A. On the other hand, A: ((z)(»))
=(A:y):z=A:z=A. This is a contradiction.

Definition 2.3. If an ideal A can be expressed in the form A=T, N --- N T,
where each T is a tertiary (resp. primary) ideal, we shall say that A has a tertiary (resp. primary)
decomposition and the individual T; will be called tertiary (resp. primary) components of the decompos-
ition. A decomposition, in which no T; contains the intersection of the remaining Ty, is said fo be
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irredundant. An irredundant tertiary (resp. primary) decomposition, in which the tertiary (resp.
nilpotent) radicals of variolis components are all different, is called a normal decomposition.

Theorem 2.2. In R with (F) and (K), any ideal A has a normal tertiary decomposition

2.1) A=TiN - NTh,
where ter(T:) is a prime ideal for each i. In any two normal tertiary decompositions of A, the number
of tertiary components is the same and the radicals of iﬁe two sets of tertiary components coincide with
each other. We shall call them the associated primes of A. Further, ter (A)=ter (Ty) M --- N ter (Tn).

Proof. From (F), we have o .

2.2) 4=Q:N---NQr,
where Q; is N-irreducible, hence for each i, Qs is tertiary, and from Lemma 2.3 ter (Q:) =Q:* is prime.
The rest is obtained from (Y. Kurata, (73, Lemma 1.7, Lemma 1.8 and Theorem 2.2).

Corollary. In.:R with (F) and (K), for any ideal A, ier (4) 2 A. Hence any primary ideal is tertiary
ideal .

It is easily proved that an ideal Q is primary if and only if Q%= 0. Hence we have the following.

Lemma 2.4. In R with (F) and (K), the radical ideal of any primary ideal Q is prime.

Proof. Q is tertiary, then from Lemma 2.3 Q=Q* is prime.

Remark. Lemma 2.4 holds in R with only (K). And also the following Lemma holds in R with
only (K). But we shall treat R with both (F) and (K) for simplicity.

Lemma 2.5. In R with (F) and (K), let Q1 and Q2 be two primary ideals such that 01=02=P and
let Q=01 N Q2, then Q is primary and Q=P.

Proo f. Since @1 and Q2 are tertiary; Q.#=Q.=ter (Qi)=P (i=1,2). From (7], Lemma 1.8) Qs
tertiary, hence Q*=ter(Q)=P=Q. Thus Q is primary.

In R with (F) and (K), let

(2.3) A=dA10 N4,
be a primary decomposition, then from Lemma 2.5, (2.3) can be refined into the following normal
primary decomposition

(2.4) A=Q1 M- NQa.

Since for each i ter (Qi)=Q:, (2.4) is a normal tertiary decomposition. Therefore we obtain the
following theorem :

Theorem 2.3. In R with (F) and (K), from any primary decomposition of A a normal primary
decomposition is refined; and it is a normal tertiary decomposition, too. In any two normal primary
decompositions of A the number of primary components is the same and the radicals of the two sets of
primary components coincide with one another.

Definition 2.4. For any set M, we shall define the ( right ) upper M-component of A, denoted by
u(A, M), as follows : For M= let u(A4, M)=A4, and for M = O let u (A, M) be the intersection of
all ideals which contain A, and that are such that every element in M is rp to them.

Definition 2.5. For any m system M, we shall define the (right) lower. M-component of A, denoted
by (4, M), as follows: For M= let [(4, M)=A. for M= letI(4, M)={x (x)(m) S A for
some m & MY. It is easily proved that [ (4, M) is an ideal.

We know the following lemma from (3. -

Lemma 2.6. For any set M, every element in M is rp to u (A, M).

Lemma 2.7. [ (4, M)={x xRm C A for some m& M}.

Proof. Let L'={x xRm C 4 for some m € M} and let [ (4, M)=L. If (x)(m) C A for some m in
M, ‘then xRm C A, and hence L C L’'. Conversely, let yRm C A4 for some m in M. Clearly in Rm there
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exists m’ in M. But, since (yRm) O (ym’, yRm’)=(y)(m’), (v)(m') C A. Thus L' C L,

From Lemma 2.7 (resp.({3), §8. Lemma 1)/ (A4, M) (resp. u (A, M) coincides with I, (4, M) (resp.
u; (A, M) in (33. Therefore from (3] we obtain the following lemma.

Lemma 2.8. For any m-system M, | (A,M) Cu(4A, M).

Furthermore ([3j, Theorem 12) holds in our case too as follows :

Theorem 2.4. In R with (K), for any m-system M u (A, M)=1(A, M).

Proof. If M= @, by the definition u (4, M)=1 (A, M)=A. If MM A= O, then u(4, M)=I(A4,
M)=R. And we shall show that, if M3 and M N 4=, every element m in M is rpto L=1/(4, M).

Suppose that (x)(m) C L for some m in M. From (K), (x)(m)=(t1,---,ta) where, for each i, t; €
L, then there exists m; € M such that (f;)(m:) C A. Since M is an m-system, there exists m'=m x1

mg---Xn.1 mp & M where every x; is in R. Now, (x)(m)(m’)=(t1,---, ta) (m') C (t1, -+, tr)( A[)l(mi))
i

C A. Of course, (m) (m’) D mRm’, then there exists an element m” in (m)(m’) N M, and hence (x)-
(y) (m") T A. Thus x & L, and hence u (A, M) C L. The converse inclusion follows from Lemma 2.8.

From the proof of ((3), Theorem 13) we have the following theorem :

Theorem 2.5. In R, for amy m-system M u(A N\ B, M)=u(A, M) Nu(B, M).

From now on, if M=P¢, where P° is the complement of a prime ideal P, we shall write u (4, P)
(resp. [ (A, P)) for u (A. M) (resp. (A, M)).

We can prove the following lemma and corollaries in a way similar to ((3), Theorem 14, Corollary
2 and Corollary 3).

Lemma 2.9. Let A be an ideal of R with (F) and (K), then every associated prime ideal of A is
nrp to A and every ideal that is nrp to A is contained in one of the associated primes of A.

Corollary 1. In R with (F) and (K), maximal nrp to A ideal coincides with one of the associated
primes of A. ‘

Corollary 2. Let P be a prime ideal of R with (F) and (K), then A=u(A, P) if and only if every
associated prime of A is contained in P.

Corollary 3. In R with (F) and (K), for any ideal A and for any its prime divisor P, u(A, P) is
the intersection of all ideals containing A whose all associated prime ideals are contained in P.

Theorem 2.6. In R with (F) and (K) if A is a primal ideal, then A* is a prime ideal.

Proof. Let A=Ti1 (- Tn be a normal tertiary decomposition of 4, then from Lemma 2.9.
Corollary 1, we easily obtain that A*=ter (T;) for some i.

In 53, W. E. Barnes, expanding the concept of the upper M-component, has defined the upper
B-component for any ideal B containig A. That is, u (A, B) is defined as u (A, M) where M is the set
of elements that are rp to B. Of course, M is not always an m-system.

Lemma 2.10. Let A and B be any ideals of R with (F) and (K). Then A=u (4, B) if and only if
every associated prime of A is contained in an associated prime ideal of B. Further, u(A, B) is the
intersection of all ideals containing A each of whose associated prime ideals is contained in an associated
prime ideal of B.

Proof. Let M be as stated above. Now, A=u(A, B)Y=A=u (A, M)==seach element m in M is
rp to 4 < each element nrp to A is nrp to B> each associated prime ideal of A is contained in an
associated prime ideal of B. Further, u (4, B)=u(A4, M)=" {C C 2 A4 and each element m in M is rp
to C}=N{D D2 A and each element x ntpto Dis nrpto B}=N{E EDA and each associated

prime ideal of E is contained in an associated prime ideal of B},

Theorem 2.7. In R with (F) and (K), let B be an ideal with associated primes Py,---, P,, then
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u(d, B)= ﬂ u(A Py).

Proof. The proof is exactly the same as in the case of ((3), Theorem 15).
Theorem 2.8. In R with (F) and (K),let P be an associated prime of A, then P is nrp to u(4, P).
Further u (A, P) is a P-primal
Proof. This is also proved in the same way. as, ({32, Theorem 16).
Corollary. In R with (F) and (K), let, P1,--:, Pn be the maximal nrp to A ideals, then
 A=u(4, P1) N Nu(4, Pa)
is a primal decomposition of A.
Proof. From Lemma 2.9. Corollary 1, every P; is prime. The rest is proved in the same way as
((3), Theorem 16. Corollary). \
Following ({33, Theorem 17), we obtain’ the following theorem.
Theorem 2.9. In R with (F) and (K), let P be a minimal prime divisor of A, then u(A, P)isa
P-tertiary ideal . '
Proof. Let P be a minimal prime divisor of 4 and let
(2.5) u(4,P) =T1N N7, '
be a normal tertiary decomposition where ter (7:)=P; for each i. From Lemma 2.9, each P; is nrp to
u (A, P). On the other hand, any element that is not contained in P is rp to u (A4, P) from Lemma
2.6. Hence for each i P; C P. Since P; is a prime divisor of 4, P;=P for each i. Therefore from
(2.5) u(A,P) is P-tertiary.
Lemma 2.11. In R with (F) and (K), let
A=01 NN QOn
be an irredundant primary decomposition. Then an element a is rp to A if and only if a is contained in
each Q:°.
Proof. Each primary Q: is tertiary. Hence for each i, Q:=Q:*=ter (Q:) is an associated prime
divisor of A. Thus from Lemma 2.9 the proof is completed.
Theorem 2.10. In with (F) and (K), let
A=01 - Qn
be an irredundant primary decomposition where Qi=Pi, then the minimal prime divisors of A are exactly
those primes which are minimal in the set Py, ,Pn.
Proof. Let P be a minimal prime divisor of 4, then P contains at least one of those Pi,---, Pa.
In fact, from the assumption A=Q1 ---N Qn =P1 (- P» C P, hence P, Pg---P, CP. Thus P2 Px
for some k. Since P is a minimal prime divisor of 4, P=P¢. Hence the converse is obvious too.
Corollary. Let R be a ring with (F), (K) and the Noetherian ideal theory, then any ideal has at
most a finite number of minimal prime divisors.
Lemma 2.12. In R with (F) and (K), let
A=01 (- N Qn
be a primary decomposition of A where Pi=Q: for each i. If P is a prime ideal which contains Py, ---, P,
but does not contain Pyi1,---, Py, then u(A, P) =Q1 M --- N Q.
Proof. From Lemma 2.10, u (4, P) S Q1N - N Qr. Conversely, for each j>r, P2 Q;. In fact, if
P D Qj, then B 2P;, This is a contradiction. Hence for each i (1<<i<C n-r), there exists an element
m; in Qr+i such that m; & P. Since P¢, the complement of P, is an m-system, there exists m=m1 r1
Mg - Fn_vr_1 Mmu_r © P¢ where r; € R. Hence m € Qry1 () -+ () Qn. Therefore, for any element g & (3
M--NOr, (¢ (M) E Q1)+ N Qu=A. Thus q € (4, P). It follows that u (4, P)=Q1 N--N Qr.
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Theorem 2.11. In R with (F) and (K), let

(2.6) A=01N-+MN On
be a normal primary decomposition of A. Then for any prime ideal P == R which contains A, P=Qx for
some k if and only if P is nrp to u(A4, P). ,

Proof. For each i, let Qi=P;. As to “only if part”, from Theorem 2.3 P is an associated prime
ideal of A. Therefore, from Theorem 2.8, P is nrp to u (A, P). As to “if part”, it is proved in a way
similar to the proof of ((2), Theorem 18).

Now we shall define the following condition weaker than the Noetherian ideal theory.

(H). For any ideal A, if ter (A) is prime, then ter (A) is a minimal prime divisor of A.

Theorem 2.12. Let R be a ring with (H), (F) and (K), and let

2.8) A=TnN-NTx
be a normal tertiary decomposition of A where Pi=ter (T;) for each i, then for any set of ideals X1,---,
Xn satisfying A C X; C T; and ter (X:)=P: for each i,

(2.9) A=u (X1, P1) N u(Xn, Pn)
is a normal tertiary decomposition of A.

Proof. From A C X; C T; C P; and from Lemma 2.9. Corollary 2, A Cu(X;, P:)-Cu(Ti, Py)=
T:. Since ter (X:)=P;, it follows from (H) that P; is a minimal prime divisor of X; for each /. Then
from Theorem 2.9, u(X;, P;) is Pj-tertiary. Now, A Cu (X1, P1) N---Nu(Xn, Pr) STr N "\ Tn=
A, hence (2.9) follows immediately. An irredundancy of (2.9) is obtained from Theorem 2.2.

Corollary. Let R be a ring with (F),(K) and the Noetherian ideal theory and let

(2.10) A=01N-+MN Qn
be a normal primary decomposition of A where Pi=Qi for each i. Then for any set of ideals X1, ,Xn

satisfying A C X: C Q: and X:=P; for each i,

A=u (X1, Py) N---Nu(Xn, Pn)
is a normal primary decomposition of A,

Remark. In above corollary, for each i let X;=(P" (1 Q:)+A for any positive integer n;, then
X; satisfies that A € X; C Q: and X:=P;,

Definition 2.6, An ideal A4 is called a quasi P-primary if A is a prime ideal P,

Theorem 2.13. Let R be a ring with (F), (K) and the Noetherian ideal theory and let P1, Pz2,---, P,
be minimal prime divisors of A. Then there exists the set of ideals X\, X2,---,Xr such that, for each 1,
X;=P; and such that

(2.10) A=X1N--NX»
is an irredundant quasi primary decomposition of A.

Proof.Let A=Q1 (- N Qube a normal primary decomposition of 4 where Q;=P; for each i, and
let P; D Py (r<<j<=n, | Zi(D=r). If I=i(j1)=---=i(j), then we shall set X1=01 NQj1 N
M Qji, and then X3 € Q1 and X1 S Qj1,-, X1 S Qji, hence X1=01 N Qj1 NN @je=P1 N Pjr NN
Pj;=P1, and so on, Now we have A=Q1 M --NQr D2X1N---NXrNQr+1 NN Qn 2 X1 N X
D A. Hence we obtain (2.10). If X1 2 X2 N---N X», then X1 2 X2 N--- X», hence Py D P2 [ --- NP,
D Py Ps---P, This is contradictory to the fact that P; is a minimal prime divisor of 4.

Theorem 2.14. Let R be a ring with (F), (K) and the Noetherian ideal theory, and let P be a prime
divisor of A. Then the following statements are equivalent to one another.

(1). P is a minimal prime divisor of A.

(2). u(A, P) is P-primary.
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(3). There exists an ideal X such that AC X, X=P and u(A, P)=u(X, P).

(4). There exists an ideal X such that X =P and X C u (A, P).

- Further each of the statements (1)——(4) implies

(5). u(A, P) is a minimal primary divisor of A.

‘Proof. (1)=(3) : From Theorem 2.10 we may assume that P=P; in that theorem. Then im
Theorem 2.13 u(A, P)=u(A, P1)=u (X1, P1) N---Nu(Xr, P1), where X; DA for each i and X1,
Xr are exactly minimal prime divisors of 4. And then for k=1, X% < P1. In fact, if Xi C P1, then
Xr C P1, and this is a contradiction. Hence u (X&, P1)=R. Therefore u (A, P)=u(X1, P) where 4 C X
and X;=P. 7

(3)—=(4) : This is evident.

(4)=>(3) : For X in (4) let Y=A+X, then it is clear that ¥ © 4 and Y=P. Hence 4 C Y C P and
u(A, P) Cu(Y,P).On the other hand, from (4) ¥ Cu(A4, P), then u(Y, P) Cu(u(A, P),P)=u(4, P}
from Theorem 2. 4.

P-primary.

(2)==(1) : If there exists a prime divisor P’ such that A CP' C P, then u(4,P) Cu(4,P)CP.
Hence u (A, P) C P'. This is contradictory to u(4, P)=P.

(1)==(5) : Let Q be a primary ideal such that u(4,P) 2Q 2 A4, then P2 Q, and u (4, P) C Q.
Hence u (A4, P)=0Q.

§3. We shall define the following condition :

(Q). Every ideal of R is represented as an intersection of a finite number of quasi primary ideals.
It is clear that R with (F) has (Q) if and only if every N-irreducible ideal is ar quasi primary ideal.
Theorem 3.1. In R with (F) and (K), the following statements are equivalent to one another.
(1). R has the Noeherian ideal theory.
(2). in Theorem 1.1.
(3). in Theorem 1.1.
(4). in Theorem 1.1.
(5). in Theorem 1.1.
(6). in Theorem 1.1.
(7). For any ideals A and B, there exists an ideal B’ such that B=B8 and AN B'C AB.
(8). For any ideal A, any prime ideal P which is nrp to u (A4, p) occurs as an associated prime ideal
of A.
(9). For any ideal A, any minimal prime divisor of A occurs as an asssociated prime ideal of A.
(10). For any ideals A and B such that A < B, ter (A) C ter (B).
(11). R has (H), and for any ideal A and for any its minimal prime divisor P, u(A, P) is primary.
(12). R has (H) and (Q).
(13). For any ideal A, let
3.1) A=T1 N NTr
be any normal tertiary decomposition of A where P;=ter (T:) for each i. If a prime ideal P contains
P1,-, P, and if it does not contain Pryy,-+-, Pn, then u (A, P)=T1 N---N Tr.
(14). Let the condition be the same as in (13). If P is a minimal prime divisor of A, then u (A, P)=

T; for some i.

Res. Rep. of Ube Tech. Coll, No.9 August 1¢69



On The Noetherian Ideal Theory 15

(15). For any ideal A and for any its minimal prime divisor P1, there exist prime divisors P1, Pg,---,
Pn of A and ideals X1, X2,---, Xn such that ter(X;)=P; for each i, and such that

3.2) A=u(X1, P1) Nu(Xz2, P2) N\ u(Xn, Pn)
is a normal tertiary decomposition of A.

(16). For any ideal A and for any its minimal prime divisor Py, there exist ideals X1, Xo,---, Xr
Such thet ter (X1)=P1 and such that A=X1 () Xo.\---M X is an irredundant decomposition. ‘

Proof. It is obtained from Theorem 1.1 and Theorem 1.2 that the statements (1)—(7) are equiva-
lent to one another.

(1)==(13) : Let (3.1) be any normal tertiary decomposition where P,=ter (T;) for each /. From

(1), it is a normal primary decomposition, too ; consequently we also have, from Lemma 2.12, that
u(A, P)y=Ty NN Tr. - .

(13)==(8) : Let a prime ideal P be nrp to u(A,P), then u(A, P) =R, hence ACP. In (3.1)
if P contains Pj,---, P, but if it does not contain P,;1,---, Pn, then, from (13) we have

(3.3) u(A4,P)=T1N--N T

It is clear that (3.3) is a normal tertiary decomposition, and therefore from Lemma 2.9 P C P; for
some i (1<i<r). But since P D P; we have P=P;.

(8)==>(9) : From Theorem 2.9, this is evident.

(9)==(4) : For any ideal 4, A= {C ! C is a minimal prime divisor of 4} D N {D ;D jis an as-
sociated prime divisor of 4 }=ter(A4).

(1)==(14) : From (9) a minimuil prime divisor P of A4 is a minimal associated prime ideal of A.
Then in (3.1) P contains only some P;, hence from (13) u (A4, P)=T:.

(14)==(5) : Let A be a tertiary ideal and let P be a minimal prime divisor of A4, then wc¢ have,
from (14), u (A, P)=A. Therefore from Lemma 2.9 Corollary 2, ter (A)=P, hence ter (A)=A. Thus a
tertiary ideal is a primary.

(1)==(10) : For any ideal 4 ter (4)=A, and we obtain (10).

(10)==(5) : Let A4 be a tertiary ideal and let P be a minimal prime divisor of 4. Since P is
primary, P is tertiary. Then P=P*=ter (P). As A C P, from (10) ter (A) C ter (P) =P. Thus ter (4) C 4.

(1)==(11) : This is evident from (4) and Theorom 2. 14.

(11)==(5) : For any tertiary ideal A, fer (4)=P is a minimal prime divisor of 4 from (H).
Hence u (A, P) is primary. On the other hand, from Lemma 2.9. Corollary 2, « (4, P)=A. Thus we
obtain (6).

(1)==(12) : This is evident from (4).

(12):4(2) : For any N-irreducible ideal A4, from (Q) A is a prime P and from (H) ter (A)=P.
Hence A is primary.

(1)==(15) : This is evident from Theorem 2. 12. Corollary, its Remark and (9).

(15)==(5) : For any tertiary ideal 4 and for any its minimal prime divisor P, from (15) there
exists an ideal X such that A=u (X, P) dnd fer (X)=P. We shall show that ter(u (X,P))=P. Let
X=T1MN---NTs be a normal tertiary decomposition, then P=ter (X)=ter (T1)---N ter (Ts). Since a
prime ideal is M -irreducible, P=ter (Tk) for some k. Hence from Theorem 2.8, u (X,P) is P-primal.
And since u (X, P) is tertiary, ter (u(X,P))=u(X,P)*=P. Thus ter (A)=P. Since P is any minimal
prime divisor of A, fer (4A) =A.

(1)==(16) : This is evident from Throrem 2.13.

(16)==>(2) : For any N-irreducible ideal 4 and for any its minimal prime divisor P, from (16)
there exists an ideal X such that fer (X) =P and such that 4=X. Hence ter (A)=P. Since P is any mini-
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mal prime divisor of A, ter (4)=A4.

References

¢1J. P. I McCarthy, Note on primary ideal decomposition, Canad. J. Math. 18 (1966), 950-952.

£23. D. C. Murdoch, Contributions to noncommutative ideal theory, Canad. J. Math. 4 (1952), 43-57.

(3). ————, Subring of the maximal ring of qﬁotients associated with closure operations, Canad. J.
Math. 15 (1963), 723-743. '

4. K. L. Chew, On a conjecture of D. C. Murdoch concerning primary decompositions of an ideal,
Proc. Amer. Math. Soc. 19 (1968), 925-932. '

(5). W. E. Barnes, Primal ideals and isolated components in noncommutative rings, Trains. Amer.
Math. Soc. 82 (1956), 1-16.

6. K. Murata, On nilpotent-free multiplicative systems, Osaka. Math. J. 14 (1962), 53-70.

C73. Y. Kurata, On an additive ideal theory in a nonassociative ring, Math. Zeit. 88 (1965), 129-135.

£8). W. E. Barnes and W. M. Cunnea, Ideal decompositions in Noelheriéh rings, Canad. J. Math. 17
(1965), 178-184.

£9). N. H. McCoy, The theory of rings, Macmillan. New York., 1964.

(10). H. Izumi, On the s-primalities in the rings (Japanese), Res. Rep. of Ube Tech. Coll. 8 (1968),
1-4. (FBFN444E 4 B15H%2H)

Res. Rep. of Ube Tech. Coll,, No.9 August 1969



