気象衛星ノア APT 画像の球面幾何歪補正

田中 護*・藤本 勉*・高浪五男**

A Correction of Spherical Geometric Distortion of Weather Satellite NOAA Images.

Mamoru TANAKA, Tutomu FUJIMOTO, Ituo TAKANAMI

Abstract

The APT (Automatic Picture Transmission) image of weather satellite NOAA is produced by the on-board computer from AVHRR (Advanced Very High Resolution Radiometer) data by using simple correction procedure for spherical geometric distortion, and has the facsimile signal format.

However, a spherical geometric distortion remains partially in the APT image in this simple correction procedure.

In order to reduce the distortion, the correction procedure is traced conversely, and a false AVHRR image is reproduced from the APT image.

The false AVHRR image is converted into the accurate egui-distance image again.

As a result of investigation of spherical geometric distortion which remains in the picture by the GCP (Ground Control Point) method, the distortion is extremely decreased by using their proposed method.

1.まえがき

U-MIPS (宇部高専気象情報処理システム)では、気象 衛星 NOAA (米国),風雲 (中国),METEOR (ソ連), ひまわり (日本) などの観測画像や気象ファクシミリ, 気象テレタイプなどを直接受信し,利用技術の開発研究 を行なっている。気象衛星画像のうち主に NOAA の APT 画像 (可視,赤外画像)に対して,有効的な利用が出来 るように各種の画像処理を試みてきた。^{1),2)}NOAA は軌道 傾斜角約98度,高度約850kmの極軌道を公転周期約1時間 42分で周回し、1日に約3度軌道が東に移行する。この

**山口大学工学部

ため受信する衛星画像の撮影地域が日毎に異なる。全画 素に対して地域を特定して利用し易い画像とするために グリッディング処理³⁾を行い,地図化した画像に変換する。 グリッディング処理などの結果がその後の処理に多大な 影響を及ぼすので非常に重要である。NOAAのAPT画 像は137MHz帯のVHFで送信されるファクシミリであ りAVHRR(高分解能放射計)で観測したデータを簡易 球面幾何歪補正しさらに可視画像の濃度や赤外画像の温 度を校正するためのデータおよびそれぞれの同期信号が 合成されている。簡易球面幾何歪補正が行なわれた受信 画像は部分的に球面幾何歪が残っており、グリッディン グ処理において受信衛星画像と、画像上に重ね描きする 地形図とが部分的に重ならない所が発生する。画像全体 にわたり球面幾何歪を取り除くために次の方法を用いる。 一旦 NOAA 側で編集する以前の球面歪画像に再生する

^{*}宇部工業高等専門学校電気工学科

図-1 AVHRR データサンプリング領域

図-2 AVHRR データと APT データ編集の相対位相

図ー 3 APT ビデオラインフォーマット (D/A 変換以前)

ために簡易補正の手順を逆にたどって球面歪画像を作る。 衛星直下点から観測点までの地表面距離を計算し球面歪 画像から等距離画像に変換する。このような画像変換の 前と後とでは画像の持つ幾何的歪がどのくらい改善され ているか調べた。そのために、予め設定してある GCP

(Ground Control Point) における地形図と球面幾何歪 補正画像との画素のずれを求めた。その結果歪が大きく 改善されており精度の良い画像を得ることができた。

2. APT 画像の簡易幾何歪補正

2-1 APT 画像

高分解能放射計 AVHRR (Advanced Very High Resolution Radiometer)は衛星直下点から走査角±55.4 度の範囲を軌道と直角方向に360rpm で走査して5チャン ネルの電磁波を観測する。衛星直下点での分解能は約1.1 kmである。図-1は AVHRR データの1走査のタイミン グを示す。このようにサンプリングされたデータは図-2のように AVHRR の3走査毎に1走査分のデータと同 期信号,テレメトリーデータを挿入し APT データとして 編集され図-3のようなフォーマットで送出される。1 APT ラインは, ch 2:可視, ch 4:遠赤外のデータか らなっている。

2-2 簡易幾何歪補正

図-4は簡易幾何歪補正の概要を示している。AVHRR 画像は気象衛星が地球表面を観測する走査角を等角速度 で走査し観測した画像である。高解像度であるけれども 観測画像は球面歪を持っている。APT 画像に編集する際, 走査線を1/3に減らし,等距離画像に補正するために走査 角を9領域に分割し,次のように平均をとって画素の間 引きを行なっている。衛星直下点より

$\theta_{\pm 1} = 0$	~±16.8度:4	画素の平均
$\theta_{\pm 2} = \pm 16$.	8~±34.8度:3	画素の平均
$\theta_{\pm 3}=\pm 34$.	8~±43.8度:2	画素の平均
$\theta_{\pm 4} = \pm 43.$	8~±48.8度:1-	- 画素の平均
$\theta_{\pm 5} = \pm 48$.	8~±55.4度:	そのまま

このような補正方法では、各領域では部分的に球面歪が 残っており特に周辺部に目立つ。解像度が約4 [Km]と なっており目視では目立たない程度である。

2-3 簡易球面幾何歪補正における距離分解能

図-5より気象衛星の走査角の変化に対する地表面距 離の変化を求める。

:走査角[rad]

A

- dθ :走査角の変化分 [rad]
- θ_e :地心角 [rad]
- H : 衛星高度 [Km]
- R : 地球半径 [Km]

図-4 APT 画像の簡易幾何補正概念図

Rg :衛星-観測点間距離 [Km]

- L :直下点-観測点間地表面距離 [Km]
- dL :地表面距離の変化分 [Km]

とすると

$r=H+R$, $Z=r \nearrow R$	•••• (1)
$\mathbf{R} \cdot \mathrm{SIN} (\boldsymbol{\theta}_{k}) = \mathbf{r} \cdot \mathrm{SIN} (\boldsymbol{\theta})$	•••• (2)
$\theta_{\rm e} = \theta_{\rm k} - \theta$	•••• (3)
$\theta_{\mathbf{k}} = \mathrm{SIN}^{-1} \{ \mathbf{Z} \cdot \mathrm{SIN} (\boldsymbol{\theta}) \}$	(4)

の関係より

 $\theta_{e} = SIN^{-1} \{Z \cdot SIN (\theta)\} - \theta \cdots (5)$

地表面距離しは

(6)式を微分する

$$\frac{\mathrm{d}\theta_{\mathrm{e}}}{\mathrm{d}\theta_{\mathrm{e}}} = \mathbf{K} \qquad (8)$$
$$\mathrm{d}\theta_{\mathrm{e}} \qquad \mathbf{Z} \cdot \mathrm{COS}(\theta)$$

$$\frac{\mathrm{d}\theta_{\mathrm{e}}}{\mathrm{d}\theta} = \frac{2 \cdot \mathrm{COS}(\theta)}{\sqrt{1 - \{Z \cdot \mathrm{SIN}(\theta)\}^2}} - 1 \quad \dots \dots \dots (9)$$

(7) (8) (9)式より

$$\frac{\mathrm{dL}}{\mathrm{d}\theta} = \mathbf{R} \cdot \left\{ \frac{Z \cdot \mathrm{COS}\left(\theta\right)}{\sqrt{1 - \left\{Z \cdot \mathrm{SIN}\left(\theta\right)\right\}^{2}}} - 1 \right\}$$
(10)

(10)式より dL は

.

$$dL = d\theta \cdot \left\{ \frac{\mathbf{r} \cdot \operatorname{COS}(\theta)}{\sqrt{1 - \left\{ Z \cdot \operatorname{SIN}(\theta) \right\}^2}} - R \right\}$$
(11)

最小走査角を dθ=1.2 [mrad] 衛星高度 H=850 [Km] 地球半径 R=6378.14 [Km] として距離分解能 dL を(11) 式により計算した結果を図−6 に示す。図−6 のように

宇部工業高等専門学校研究報告 第38号 平成3年3月

図-5 走査角-地表面距離の関係

簡易球面幾何歪補正では距離分解能を一定の範囲に納め ることができる。しかし各領域内では球面歪を持ったま まである。さらに分割した領域の境界で分解能が不連続 となっている。

3. 画像再生による球面幾何歪の補正

3-1 球面幾何歪画像の再生

NOAA の APT 画像の簡易球面幾何歪補正では歪が残 るので簡易補正以前の状態に一旦戻す。図-5の関係よ り,領域分割点走査角 $\theta_{\pm 1} \sim \theta_{\pm 5}$ に対する地表面距離 $L_{\pm 1}$ ~ $L_{\pm 5}$ を求める。領域番号 $i = \pm 1 \sim \pm 5$ に対して

$Rs = \sqrt{R^2 - [r \cdot SIN(\theta i)]^2} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$Rgi = r \cdot COS \ (\theta i) - Rs \cdots (13)$
$\theta ei = SIN^{-1} \left\{ \frac{Rgi \cdot SIN(\theta i)}{R} \right\} \dots $
$Li = R \cdot \theta e \cdots \cdots$

図-7に走査角 θi と Li の関係を示す。さらに Li に対す る画素位置 Ii を求める。入力可視または赤外画像の1走 査ラインは2000画素あり図-7における画素番号は画像 表示の都合で走査方向とは逆に並べ変えてある。 受信画像の領域分割点画素番号は

 $Ii = \frac{(1835 - 88)}{(L_{+5} - L_{-5})} (Li - L_{+5}) + 88 \dots (16)$

次に NOAA の簡易球面幾何歪補正で行なっている各領 域での画素の間引きに対して,逆に画素を補間すること によって AVHRR 画像に相当する球面幾何歪画像を再生 する。補間の方法は色々考えられるが,ここでは線形補 間を用いた。

図-8において

I_{±1}では同一画素を8個繰り返して補間する。

I_{±2}では同一画素を6個繰り返して補間する。

I_{±3}では同一画素を4個繰り返して補間する。

I+4では同一画素を3個繰り返して補間する。

I+5では同一画素を2個繰り返して補間する。

受信画像の88~1835画素が球面歪画像の1~N 画素に拡 大される。

3-2 球面幾何歪補正画像の生成

球面幾何歪補正画像を生成するためには、図-9のよ うに補正画像の画素番号 X₁に対応する球面幾何歪画像の 画素番号 X₂を求め、X₂での画素値を球面幾何歪補正画像 の画素値とする方法をとる。

X₁に対応する地表面距離Lを求める。

図-8 球面歪画像への画素補間

Lに対応する地心角 θe を求める。

$$\theta e = L \nearrow R$$
(18)
 $Rg = \sqrt{R^2 + r^2 - 2 \ rR \cdot COS \ (\theta e)}$ (19)

θeより走査角を決定する。

θに対応する球面歪画像の画素位置 X₂を求める。

X₂における画素値を X₁の値とする。

3-3 簡易補正領域分割点について

APT 画像の簡易補正領域分割点画素位置の決定は,容 易ではない. 図-4, 図-6のように APT 画像では走査 方向に不均一な球面歪が残留し全画素位置に影響してい るからである. 球面歪補正後の等距離画像に対する APT 画像の走査方向のずれを距離に直し図-10に示す. 例え ば衛星高度700 [km]の場合を見ると, 画像の両端, 中央 および横軸とクロスする箇所においてはずれがゼロにな る. このように領域分割点付近では APT 画像の領域分 割点画素位置を求めた.

4. 処理例

4-1 画像入力

画像は NOAA-11号を1990年 8 月 8 日13時42分33秒 より約9分間受信したものである。図-11は入力時の気 象衛星の通過軌道と軌道計算に用いた各パラメータの値 を示す。可視,赤外画像共走査方向に2000画素,走査線 1024本,1 画素11ビットからなる。写真-1は受信した NOAA-APT 可視画像である。撮影の都合で走査方向を 1000画素に縮めてある。

4-2 球面幾何歪画像の再生

写真-2は再生した球面幾何歪画像である。但し,球 面幾何歪画像の1走査線分の画素数は大きく引き延ばさ れているので画像全体を表示することができない。従っ て表示のために走査線方向の画素数を1000個に減らして ある。周辺が縮んだ画像となっている。NOAAのAVHRR 画像に相当する画像である。

4-3 球面幾何歪補正画像の生成

球面幾何歪画像について3-2の処理を行なって球面 幾何歪補正画像を生成する。写真-3は受信原画にグリッ ディング処理を行なったものである。写真-4は球面幾 何歪補正画像にグリッディング処理を行なったものであ る。写真-5,6,7,8は部分拡大してある。これら の写真から,受信原画像と球面幾何歪補正画像とを比較 し,受信原画像で画像の地形と地形図とがずれている箇 所に注目する。例えば和歌山,能登半島,佐渡島,伊豆 半島,銚子,奥尻島,国後島などの海岸線について,受

信原画像にグリッディングを行なったものでは,西にず れたり東にずれたりしており場所により異なる。同じ場 所について球面幾何歪補正画像では,地形図と球面幾何 歪補正画像の海岸線とが一致していることがわかる。

5. 画像の幾何歪検出

5-1 画像の幾何歪検出方法

気象衛星画像の幾何歪の検出方法は、GCP を中心とし た気象衛星画像の小ブロックを切り出し、小ブロック画 像から二値化した海岸線画像を作る。対応する GCP を中 心とする地形図画像との相関をとり、相関値最大点と地 形図画像とのずれを求める。この方法については参考文 献(4)で報告した。地形図の内、日本列島の海岸線デー タは、国土地理院より磁気テープで購入し、データ数を 減らして編集したものを用いた。GCP 位置は地図データ が信頼できる日本列島を対象とし図-12のように地形に 特徴のある124箇所を設定した。

5-2 検出結果

表-②は受信原画に対して画素のずれを検出した結果 である。124箇所中113箇所で検出できた。表-③は球面 歪補正画像に対して画素のずれを検出した結果である。 103箇所で検出できた。これらのデータから相関値が0.4 以上のものについてずれの様子を図-13で表わす。図-

図-11 NOAA-11 通過軌道と軌道情報

図-12 GCP 設定位置

13において,旧補正法とはグリッディング処理のとき(5), (6)式より走査角θによって地表面距離Lが変化する ことより,走査角θを変化させて地形図の重ね方を調整 する方法である。この方法では走査方向の調整は可能で あるが,部分的に存在する幾何歪に対しては対応できな い。検出結果をみると旧補正法では画素のずれが大きく, 部分的にずれる方向が集中する特異な形をしている。こ れに対して球面幾何歪補正画像ではずれが少ないし,集 中現象もなく質の良い画像が得られたことがわかる。

6. むすび

NOAA の簡易球面幾何歪補正画像は球面歪が残って

写真-1 受信原画像(可視) NOAA-11 Aug.8 1990

写真-2 球面歪画像 NOAA-11 Aug.8 1990

写真-3 グリディング処理結果(受信原画像) 日本付近:NOAA-11 Agu.8 1990

写真-4 グリディング処理結果(補正画像) 日本付近:NOAA-11 Agu.8 1990

45

写真-5 グリディング処理結果(受信原画) 部分拡大①:NOAA-11 Agu. 1990

写真-7 グリディング処理結果(受信原画) 部分拡大②:NOAA-11 Agu. 1990

写真-6 グリディング処理結果(補正画像) 部分拡大①:NOAA-11 Agu. 1990

写真-8 グリディング処理結果(補正画像) 部分拡大②:NOAA-11 Agu. 1990

図-13 GCP 点のずれ

いるうえに補正領域のきりかえ部分で距離分解能が不連 続な画像でありグリッディングが成功しない主な原因と なっていた。これに対して簡易球面歪補正される以前の AVHRR 画像に相当する球面歪画像を再生し,再生画像 から等距離画像を新たに作りかえることにより画像の持 つ幾何歪を大きく改善することができた。またグリッディ ングの結果も良好であった。

まだ GCP 箇所が少なく雲の多い画像の場合にはずれの 検出が困難である。信頼できる大陸部地図データが入手 できれば GCP を広い範囲に取れるので歪の集中する画像 の両端近くまで検出可能となるであろう。

以上の処理過程では画像を二度作りかえる手順とその 際画素の補間という操作が入る。従って処理時間が増え ること, 画素値のオリジナリティーを失うという欠点が ある。しかしながら APT 画像に必ず含まれている球面幾 何歪を取り除くことができた。

グリッディングの結果は日本列島付近については良好 である。しかし大陸部など画像の一部では目視でも不十 分な箇所がある。主に3-3で述べた簡易補正画像分割点 の決定方法が不完全であると思われる。このことを含め さらに精度の良い画像を追究していきたい。

7. 参考文献

- 藤本・田中:気象衛星(NOAA)画像の処理-海面温度の推定と雲域除去-,電気四学会中国支部連合大会講演論文(昭和62年)
- 藤本・田中:気象衛星ノア画像処理-可視情報を利用した海霧発生域の抽出と海表面温度分布図の作成-,電気四学会中国支部連合大会講演論文(昭和63年)
- 3)藤本・田中:気象衛星画像のグリッディング処理, 電気四学会中国支部連合大会講演論文(昭和60年)
- (4)藤本・田中:気象衛星ノア画像の弓状ひずみの補正, 電気四学会中国支部連合大会講演論文(平成元年)
- 5)藤本・田中:気象衛星ノア APT 画像の球面幾何歪補 正,電気四学会中国支部連合講演論文(平成2年)
- 6) A. Schwalb: THE TIROS-N / NOAA A-G SAT-ELLITE SERIES, NOAA National Environmental Satell-ite Service, Washington, DC 20235 (平成3年9月24日受理)