On the generalized *t*-full modules

Kazuo Shigenaga*

Abstruct

Let R be a ring with identity and t a left exact radical of R-mod. In this paper, we shall introduce the notion of the generalized t-full module and study its basic properties. And , it is shown that, for its corresponding Gabriel topology $\mathcal{L}(t)$ and a linear topology $\mathcal{L} = \{R | I \ge t(R)\}$, the linear topology $\mathcal{L}(t) \cap \mathcal{L}$ is contained in $\boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon}$ is the set of all essential left ideals of R. In particular, if R is generalized t-full as a left R-module, then $\mathcal{L}(t)$ $\cap \mathcal{L}$ is just equal to the set $\boldsymbol{\varepsilon}$.

1. Preliminaries

Throughout this paper, R is a ring with identity and R-modules are unital left R-modules. R-mod. denotes the category of all R-modules. We denote by E(M) the injective hull of $_RM$. Let t be a left exact radical of R-mod.

An *R*-module *M* is said to be a *t*-full module if it is torsionfree and for each essential submodule *N* of *M*, M/N is torsion (cf. [1]). Generalizing this concept, we define an *R*-module *M* to be generalized *t*-full (in short, *g.t*-full) if *N* is an essential submodule of *M*, then M/N is torsion and t(M) = t(N).

Note that a *t*-full *R*-module is nothing but a torsionfree *g.t*-full *R*-module. As is easily seen *g.t*-full modules are not always *t*-full modules.

For all undefined notions about torsion theories we refer to Golan [1], Kurata [2] and Stenström [3].

2. Several properties of generalized t-full modules

As is well-known, if N is a (t-) dense submodule of a torsionfree R-module M, then N is essential in M. But, this property holds under a more weaker assumption as the following lemma shows:

Lemma 1. Let M be an R-module and N a submodule of M. If M/N is torsion and t(M) = t(N), then N is essential in M.

Proof. First note that t(M) = t(N) if and only if $N \ge t(M)$. Now, since M/t(M) is torsionfree and (M/t(M))/(N/t(M)) ($\cong M/N$) is torsion, it follows that N/t(M) is essential in M/t(M). Hence N is essential in M.

From this lemma, we see that M g.t-full is equivalent to the following condition :

^{*}宇部工業高等専門学校数学教室

for any submodule $N \leq M$, $N \leq M$ if and only if M/N is torsion and t(M) = t(N).

Proposition 2. If M is g.t-full and N is a submodule of M then N is also g.t-full.

Proof. Let N' be an essential submodule of N and let M' be a complement of N in M. Then $N \oplus M'$ is essential in M and hence $N' \oplus M'$ is also essential in M. As M is g.t-full, $t(N' \oplus M') = t(M)$, $t(N \oplus M') = t(M)$ and $M/(N' \oplus M')$ is torsion. Thus $(N \oplus M')/(N' \oplus M')$ is torsion and so is N/N'. Moreover we see t(N') = t(N). Thus N is g.t-full.

Proposition 3. Let M be a g.t-full module and N a submodule of M with $N \leq t(M)$. Then, M/N is g.t-full.

Proof. Let N'/N be an essential submodule of M/N. Since N' is essential in M, t(M) = t(N') and M/N' is torsion. Hence (M/N)/(N'/N) is also torsion. Moreover, by the assumption, t(M/N) = t(M)/N = t(N')/N = t(N'/N). Therefore, M/N is g.t-full.

Proposition 4. Let M be an R-module and N a closed submodule of M such that $N \ge t(M)$. If N and M/N is g.t-full then M is g.t-full.

Proof. Let N' be an essential submodule of M. Since N is closed in M, (N'+N)/N is essential in M/N. Hence M/(N'+N) is torsion since M/N is g.t-full. Moreover, $N' \cap N$ is an essential submodule of N and N is g.t-full. So, $N/(N' \cap N)$ is torsion. In the exact sequence $0 \rightarrow (N'+N)/N' \rightarrow M/(N'+N) \rightarrow 0$, since (N'+N)/N' and M/(N'+N) are torsion, it follows that M/N' is torsion. Furthermore, we have $t(N' \cap N) = t(M)$ from the fact that : $N' \cap N$ is essential in N and $N \ge t(M)$. Hence it follows that t(N') = t(M) and thus M is g.t-full.

Proposition 5. Let M be an R-module. The following conditions are equivalent : (1) E(M) is g.t-full.

(2) t(E(N)) = t(N) and E(N)/N is torsion for all submodule N of E(M).

Proof. (1)=(2). For any submodule N of E(M), E(N) is g.t-full by Proposition 2. Hence, t(E(N)) = t(N) and E(N)/N is torsion. (2)=(1). Let N be an essential submodule of E(M). Then we have E(M) = E(N) and hence E(M) is g.t-full by assumption.

Proposition 6. If M is a torsion R-module, the following are equivalent :

- (1) M is g.t-full.
- (2) M is semisimple.

Proof. $(1) \Rightarrow (2)$. Let N be a submodule of M. Then there is a submodule X of M such that $N \oplus X \leq M$. Since t (M) = M, we see that $M = t(M) = t(N \oplus X) = t(N) \oplus t(X) = N \oplus X$. Hence $N \leq \oplus M$. Therefore M is semisimple. $(2) \Rightarrow (1)$ is clear.

Corollary 7. An R-module M is g. 1-full if and only if M is semisimple.

Proof. Clear.

3. Generalized t-fullness of RR

Let t be a left exact radical of R-mod. and $\mathcal{L}(t)$ the associated left Gabriel topology. Further put

 $\mathcal{L} = \{ I \leq_R R \mid t(R) \leq I \}$

This is a left linear topology. Using there concept we shall give in this section a necessary and sufficient condition for $_{R}R$ to be g.t-full

Proposition 8. The intersection of $\mathcal{L}(t)$ and \mathcal{L} is contained in \mathcal{E} , where \mathcal{E} is the set of all essential left ideals of R.

Proof. Noting that $I \ge t(R)$ if and only if t(I) = t(R), by Lemma 1, we can easily prove the proposition.

Theorem 9. The following conditions are equivarent: (1) R is g.t-full. (2) $\mathcal{L}(t) \cap \mathcal{L} = \boldsymbol{\varepsilon}$.

Proof. This is clear from the proposition 8 and the definition of g.t-fullness.

Corollary 10. Following conditions are equivarent: (1) R is g. 1 -full. (2) $\mathcal{L}(1) \cap \mathcal{L} = \boldsymbol{\varepsilon}$. (3) R is semisimple.

Proof. Clear.

Corollary 11. Let (T_1, T_2, T_3) be a hereditary 3-fold torsion theory and t_1 the left exact radical with respect to (T_1, T_2) . Then, R is g.t₁-full if and only if R is semisimple.

Proof. It is clear from $\mathcal{L}_1 \cap \mathcal{L}_2 = \mathcal{L}_1 \cap \{I \leq R \mid I \geq t_1(R)\} = \{R\}$, where \mathcal{L}_1 and \mathcal{L}_2 are the Gabriel topologies corresponding to (T_1, T_2) and (T_2, T_3) , respectively.

References

- [1] J. Golan: Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics 29.
- [2] Y. Kurata: On an n-Fold Torsion Theory in the Category _R M, J. algebra 22(1972), 559-572.
- [3] B. Stenström: Rings of Quotients, Springer Verlag, Berlin Heidelberg New York, 1975.

(昭和62年9月20日受理)