生物学的脱窒素反応の高能率化に関する研究(II) 一有機物酸化,硝化および脱窒反応の競争する系における反応速度論—

> 村上定瞭*·深川勝之*·竹内正美* 原田利男*·原田邦彦*·中西 弘**

Studies on Biological Nitrogen Removal from Waste Water(II) —Modelling of Biochemical Raction and Kinetics for the system of Competing Reactions of Organics Oxidation, Nitrification and Denitrification—

> Sadaaki MURAKAMI, Masayuki FUKAGAWA Masami TAKEUCHI, Toshio HARADA, Kunihiko HARADA and Hiroshi NAKANISHI

Abstract

The biological reactions were modelled and were treated kinetically, concerning the process analysis for the design and maintenance for the simultaneous removals of organics and nitrogen from the sewage by means of the activated slugde process with a single reactor. The activated sludge was cultivated in an oxidation ditch with the artificial sewage, and the various kinetic parameters were determined from the results of the batch method. The components of the mixed liqour calculated as a function of the time using the kinetic model suggested here were found to be in good agreement with the experimental results, and the model and its parameters seem to be practically usefull in the process analysis.

1. はじめに

単一曝気槽やオキシデーション・ディッチにおいては, 炭素系有機物と窒素が同時に除去されており,これらの 槽内では有機物酸化,硝化および脱窒反応が並行してか つ同時に進行することが知られている。このため,反応 装置の設計や操作管理において不確定な要素を多く含ん でいる。したがって,各反応をバランスよくスムーズに 進行させるためには,これらの系における競合反応を適 正なモデルで表わすことが要求される。

現在,衛生工学の分野ではモデル化の目的として,次 のような傾向に別れる。

(1)微生物生理という複雑な現象をより深く統一的に理 解するためのモデル化

(2)微生物反応容器を設計したり,最適条件を見い出し たり,反応プロセスの合理的管理に役立てるモデル化 著者ら^{1,2,3)}は後者の立場から,し尿の単一曝気槽による 有機物および窒素除去において競合した反応機構につい ての説明を行い,さらに反応モデル式を立て現象をうま く表現することができた。しかし,得られたパラメーター の値は,し尿等の高濃度基質に適用できるものであって, 下水等の希薄廃液の基質には適さない値も多く含まれて

^{*}宇部工業高等専門学校工業化学科

^{**}山口大学工学部土木工学科

いる。また,反応機構においても省略・簡素化できない 要素も含まれている。このため,本研究ではオキシデー ション・ディッチに模凝下水を投入して連続培養した汚 泥を用いて,一連の回分実験を行い,次のような手順に より反応モデル式を検討した。

(1)まずはじめに、し尿処理において提示した反応モデルを適用して実験値のシミュレーションを行なう。
(2)省略・簡素化できない要素を逐次導入して、最適な反応モデル式を確立し、あわせて実験的に求めたパラメーター値の補正を行なう。

ところで,有機物酸化,硝化あるいは脱窒などの個々 の単一プロセスについての反応速度論的研究はいままで に数多く見られる。しかし,著者らの研究はこれらの各 反応が競合した反応系での速度論を扱うものであり,主 としてし尿を対象として検討を行なって来た。一方,下 水等の希薄廃液においては,その実験的解析がこれまで 皆無であり,一連の本研究を補う実験解析が今回の目的 である。

2.反応モデル式

有機物および窒素の同時除去を行なう場合、活性汚泥 は有機物酸化菌,硝化菌および脱窒菌より構成される。 これらの細菌類の行なう反応の概要は表1に示すような ものであり,それぞれの反応に及ぼす主な要素として温 度,pH,DO,有機物,NH⁺4,NO⁻2,NO⁻3,活性汚泥 濃度などが挙げられる。各反応に及ぼす主な要素あるい は因子をまとめて表2に示す。

動力学的に取り扱う場合に、温度および活性汚泥濃度 を除く各要素を monod 型関数 $C_i/(C_i + K_i)$ (C_i :各要素 の濃度, K_i :各要素の飽和定数)とし、また阻害効果を 示す各要素は $K_i/(C_i + K_i)$ として、それぞれを表現する。 表 2 に示す各反応速度を最大反応速度定数 U_i と上記関数 の積として表わすと、反応槽内の各物質の動力学的モデ ルは、表 3 のように示される。表中の各記号は、本論文 の末尾にまとめて示す。この反応モデルを導入する過程 で次のような省略・簡素化を行なう。

 NO ½および NO 3については、これらの総和として、 NO xで示す。

(2)有機物の指標として COD を用いる。

(3)処理系では pH 緩衝能を示す多くの物質が存在する ため、生物反応による水素イオン濃度の消費あるいは放 出の量が直接反映されない。そこで水素イオンの濃度代 わりに、水素濃度の消費量あるいは放出量と比例関係に あるアルカリ度Aを用いた。

(4)酸化および硝化反応においては、電子受容体として 酸素が消費される。また、酸化および脱窒反応において は、電子供与体として有機物が消費される。これらの代 謝反応においては、細菌の種類や代謝経路が異なるので、 同じ物質でも反応の種類によって Monod 関数における飽 和定数が異なるものと考えられる。しかし、本モデルで は反応式をなるべく簡素化するために、代謝経路が異なっ ても同じ物質については、原則として同じ飽和定数を用 いる。実際のシミュレーションにおいては、問題が生じ た場合には逐次訂正を加えて行くこととする。

3.実験および方法

3.1 供試汚泥

供試汚泥は図1に示すようなオキシデーション・ディッ チを作製し、模凝下水を用いて連続培養したものを用い た。⁴⁾ディッチは楕円形状とし、有効容積21.5L,水路長 2.5m,ロータ形状は横ロータ型とし,沈殿池の有効容積 は3Lである。模凝下水の成分と性状を表4に示す。

炭素源としてスキムミルク,窒素源として硫酸アンモ ニウム,リン源としてリン酸水素カリウム等を投入して いる。この原水を水道水で5倍に希釈して,滞留時間を 18時間とした。20℃,pH6.7で運転したときの COD の除 去率は98%,窒素の除去率は80%であった。

3.2 回分実験

図2に示すように、直径20cm、高さ30cmの円筒形の反 応容器を20℃に設定した恒温槽に浸した。この反応槽に 各物質濃度を調整した原水をいれて、所定の流量で空気 曝気を行いながら、汚泥を投入して攪伴し、各物質の経 時変化を測定した。原水の成分は、スキムミルク、硫酸 アンモニウム, 硝酸ナトリウム, リン酸水素カリウム, 炭酸水素ナトリウム,炭酸ナトリウムを用いて調整した。 各物質の初期濃度 (mg/L) は、COD: 0~160、NH t -N: 0~25, NO x-N: 0~30, アルカリ度: 20~220の 範囲で変化させ、PO³⁻⁻Pは5 mg/Lで一定とした。汚泥 濃度は3000~5000mg/Lであった。供試汚泥は残留基質を 除くため、水道水で3回洗浄した。原水は汚泥投入前に 所定の流量で十分曝気を行ない DO を飽和濃度とした。 ただし、脱窒反応に関するパラメーターの値を求める実 験では、窒素ガスを十分通じて脱気を行ない、容器を密 封した。汚泥を投入してから反応系が完全に均一になっ

Res. Rep. of Ube Tech.Coll., No. 33 March 1987

酸化	硝化	脱窒
$0rg.$ 0_2		$\begin{array}{ccc} \text{Org.} & \text{NO}\overline{\star} \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $
CO2 H2 0		$\begin{array}{c} CO_2 \\ H_2 \\ 0 \\ \end{array} \\ N_2 \end{array}$

表1 生物学的反応のモデル

表 2 有	[檈物 酸 化 、	硝化およ	び脱窒反応	に影響する因子
-------	------------	------	-------	---------

		温度	рН	DO	Α	СОД	NH 🖡	N O x	Biomass
有楼物	酸化	0	0	0		0			0
硝	化	0	0	0	0		0		0
脱	窒	0	0	0		0		0	0

表3 動力学モデル式

COD除去	<u>1 d S</u>	Us S	DO	- a d C 3		
(1)	Xdt	Ks + S K	• + D O	d t		
NHよ除去	<u>1 d C 1</u>	U1 C1	DO	A		
(2)	Xdt	K ₁ + C ₁	K ₀ + D (D K A + A		
NOx生成	$1 d C_2 l$		DO	<u> </u>	U ₂ C ₂	S
(3)	Xdt H	(, + С, К	• + D O	K A + A	K ₂ + C ₂	K . + S
N₂ 生成	<u>1 d C 3</u>	U2 C2	S			
(4)	Xdt	K ₂ + C ₂	K s + S			
污泥堆殖	d X	dS	d C ،	d C a		
(5)	dt =	dt	d t	+ c d t	- d X	
DOの収支	dDO	d S	dCı			
(6)	d t	$\frac{a}{dt} = b$	dt	- d ´ X + F	(La (DO	s - DO)
アルカリ度	d A	dCı	d C 3			
(7)	<u>d t</u> = -	$e \frac{1}{dt} +$	f d t			

ディッチ容積21.51, 水路長2.5m, 水深10cm, 沈殿池容積 3 l

図1 オキシデーション・ディッチの概略図

図2 回分実験装置

表4 模擬下水の成	分と	性状
-----------	----	----

原水 成分	ng∕ 1	性 状 mg/1
スキムミルク	400	BOD 220~250
(NH4) 2 ^{SO} 4	188	COD 150~200
KH2PO4	18	Kj−N 50~60
NaHCO3	100 ~0	NH ₄ -N 35~45
^{Na} 2 ^{CO} 3	50 ∼0	T. P 7.5 ∼8.5
		P04-P 5.5 ~6.5

たと判断できる5分後から、サンプリングを開始し、適 宜採水してろ紙 Na5Cによるろ液を分析した。分析項 目は、COD、Kj-N、NH \ddagger -N、NO $\frac{1}{2}$ -N、NO $\frac{1}{3}$ -N、 T-P、PO \ddagger -P、アルカリ度および MLSS である。有 機物の指標として COD を用いたが、測定法上 NO $\frac{1}{2}$ -N も COD として測定されるので、これを補正した値を用い た。総括酸素移動容量係数 KLaは、亜硝酸ナトリウムを 加えて DO を除去し、所定の流量で空気曝気を行ない、 DO の経時変化より決定した。この際、触媒として塩化コ バルト (II) を添加した。

4. 結果

4.1 回分実験

代表的な回分実験結果を図3および図4に示す。各物 質の経時変化は任意の時刻における初期濃度で割ったの である。ただし、各形態の窒素は総窒素の初期濃度で割っ たもので、 $N_2 - N$ については溶液濃度に換算したもので ある。

図3は硝化反応に及ぼす DO とアルカリ度の効果を比 較したものである。この図の(A)においては、NH ±-N に 比べてアルカリ度が十分存在するので、NH ±-N は反応 開始後直ちに硝化され、1時間後にはほぼ完全に除去さ れている。一方、(B)においてはアルカリ度が存在する間 では硝化が進行しているが、反応開始後1時間経過して アルカリがほとんど消費されるとNH ±-N は一定値を示 し、硝化反応が停止している。前述したように(A)におい てはアルカリ度、DO ともに十分であるので、NH ±-N は1時間までに完全に除去されている。ところが、(C)に おいてはアルカリ度が十分あるにもかかわらず、DO が低 いために硝化が極めて遅い。DO が"0"に近いにもかかわ らず硝化が進行しているのは、曝気を行ない酸素は常に 供給されているからである。

図4は脱窒反応に及ぼす DO および COD の効果を比較 したものである。図4の(A)は COD 濃度が高く,かつ DO が低いため,脱窒が進行し N₂の生成が行われている。一 方,(B)を見ると1時間経過後 DO が増加しはじめると同 時に脱窒反応が停止している。(C)を見ると,COD 濃度が 極めて低いため低 DO 濃度であるにもかかわらず脱窒反 応はほとんど進行していない。

4.2 パラメーター値の決定

有機物, NH ¼, NO xをそれぞれ制限因子とする回分実 験より, 有機物酸化, 硝化および脱窒についての各最大

Res. Rep. of Ube Tech.Coll., No. 33 March 1987

反応速度定数 U_s, U₁, U₂および各反応に関与する物質の 飽和定数 K₁を決定した。これらの値を表5に示す。

有機物酸化についての最大反応速度定数 U_sおよび飽和 定数 K_sを算出するための Lineweaver – Burk プロットの 一例を図5 に示す。この直線の勾配および縦軸との交点 より U_s=0.021h⁻¹および K_s=26mg/L が得られた。この 方法により求めた数例の平均値が表5 に示してある。同 様な方法により,硝化および脱窒についての最大反応速 度定数 U₁および U₂, NH \ddagger -N および NO \ddagger -N の飽和定 数 K₁および K₂を決定した。また,脱窒反応の際に消費さ れる COD の換算係数 α は NO \ddagger -N の単位消費量に対す る COD の消費量より算定した。

次に、DO を制限因子とした実験より有機物および硝化 に関する DO の飽和定数 K_oを決定した。図 6 に有機物除 去速度 U_s'と DO との関係を示す。U_s'=U_s/2のときの DO

図3 硝化反応に及ぼすDOとアルカリ度の効果

の値より Ko=0.2mg/L と決定した。同様にして, 硝化反応におけるアルカリ度の飽和定数 KAを決定した。図7に 硝化速度 U1とアルカリ度 A の関係を示す。

換算係数 a, b, d, a', b'および d'は 文献値^{3,5)} より, e および f は化学量論的に決定した。

4.3 シミュレーション

表3に提示した動力学モデル式に,表5で示す各パラ メーターの値を代入して,Runge-Kutta法を用いて回分 実験の結果をシミュレートし,モデルおよびパラメーター の値の妥当性を検討した。

COD についてのシミュレーションの一例を図8に示す。 COD の初期値が141mg/L である Run3においては実験値 との間にかなりの整合性が見られるが,初期値が13.0mg/ L である Run12においては計算値と実測値にはかなりの 相違が見られる。今回の実験では, COD の初期値は0

報告 第33号 昭和62年3月

宇部工業高等専門学校研究報告

記号	模擬下水	模擬し尿
温度(℃)	20	30
U. (h ⁻¹)	0.024	0.15
U1 (h ⁻¹)	0.005	0.01
$U_2(h^{-1})$	0.002	0.03
K _ (mg/l)	20	100
K 1 (mg/L)	5	0.5
K 2 (mg/L)	7	0.1
K ₌₀(∎g/L)	0.5	0.2
K(mg/L)	0.2	
K ∧ (mg/L)	20	100
α	0.9	0.9
a	0.70	0.70
ь	0.17	0.17
c		
d (h ⁻¹)	0.002	0.002
a'	0.34	0.34
ь'	4.57	4.57
d'(h ⁻¹)	0.0044	0.0044
e	6.07	6.07
f	3.57	3.57
$K_{La}(h^{-1})$	0.00~6.75	0.00~5
DO.(mg/L)	8.84	7.53

表5 各パラメーターの値

図5 COD除去速度のLineweaver-Burkプロット

Res. Rep. of Ube Tech.Coll., No. 33 March 1987

プロットー測定値,実線ーシミュレーション

~160mg/L の範囲で検討したが, 50mg/L 以上では Run3 のような整合性が見られたが,この値以下では COD の初 期値が小さくなるほど偏差が大きくなった。

NH \ddagger -N についてのシミュレーションの一例を図 9 に 示す。NH \ddagger -N の初期値は Run18では16.1mg/L, Run21 では2.69mg/L である。いずれも、計算値および実験値の 間にはよい一致が見られた。NH \ddagger -N については、0~25 mg/L の範囲で検討したが、いずれも極めてよい整合性が 見られた。

NO \bar{x} -N およびアルカリ度についてのシミュレーショ ンの一例を図10および図11に示す。NO \bar{x} -N およびアル カリ度の初期値はそれぞれ 0 ~ 30mg/L および20~220mg/ L の範囲で検討したが、図10および図11に見られるように、 いずれも極めてよい整合性が確認された。

窒素ガスの生成量を分析していないが、NH \ddagger -N およ び NO \overline{x} -N ともによい整合性が見られることから、硝化 および脱窒のいずれの反応についても、モデル式および パラメーターの値は妥当なものと考えられる。

5.考察

シミュレーションにより検討したところ,硝化および 脱窒に関する反応モデル式およびパラメーターの値はほ ぼ妥当なものであることが分かった。脱窒反応において DOの阻害効果を考慮に入れていないが,今回の検討では この効果を反応式に組入れなくても実験値をうまくシミュ レートすることができた。

一方, COD については, COD の初期値が50mg/L 以下 になると計算値と実験値との間には大きな差異がみられ、 再検討すべきであることが指摘された。問題点として、 (1)有機物除去に関するパラメーターの値, すなわち最大 反応速度定数 Us, 飽和定数 Ksおよび Ko, および(2)脱窒 時に消費される COD の換算係数 a が挙げられる。そこで、 U_s, K_s および α の値をいろいろと変化させてシミュレー ションを行なったが、実験値との整合性は改善されなかっ た。ところが、DOの飽和定数 Koを変化させたところ、 COD に関しては改善されたが、逆に硝化反応に関する整 合性が悪くなった。2.の(4)で述べたように、同じ物質 であれば代謝反応の種類が異なっても Monod 型関数にお ける飽和定数は同じ値を用いた。そこで、有機物酸化お よび硝化反応において, DOに関する飽和定数を分けてそ れぞれ K_{so}および K_{No}とする。K_{No}の値はそのままにして、 Ksoの値を変化してシミュレーションを行なったところ,

門学校研究報告 第33号 昭和62年3月

整合性に改善が見られ, K_{so}=0.5mg/L が妥当な値である ことが分かった。この値を用いたシミュレーションの一 例を図12に示す。

次に,模凝下水を対象とした今回のモデル式を模凝し 尿の場合と比較すると,次のような点が挙げられる。

(1)今回のモデル式は模凝下水の場合と同じである。し かし,し尿においては有機物および硝化において,DOに 関する Monod 型関数の飽和定数は同じ値を用いても問題 が生じなかったが,下水を対象とした場合には異なる値 を用いる必要がある。模凝下水の場合には,低い有機物 濃度になるほど実験値と計算値との偏差が大きくなるこ とから,原水中の有機物の高い模凝し尿の場合には同じ 飽和定数を用いても問題が生じなかったことと推定され る。

(2)表5^{3,5)}に模凝し尿の回分実験より求めた各パラメー ター値を比較して記載している。*a*, a, b, …などの換 算係数はし尿および下水いずれも同じ値が適用できるこ とが分かった。しかし,最大速度定数および飽和定数の 値はかなり異なる値を示している。この一因として測定 温度の相違があるが,これを考慮してもなお大きな相違 といえる。硝化および脱窒反応のNH¹₄-N および NO¹_x -N の飽和定数は下水の方が数10倍大きいのに対して,他 の飽和定数および最大反応速度定数はし尿の方が数倍か ら数10倍程度大きい値を示している。

以上のことから、培養した原水の成分および濃度によっ て活性汚泥の微生物相やその生理活性度に相違が生じ、 各パラメーターの値が大きく異なることが考えられる。 このことは、パラメーターの値をプロセス解析などに適 用する際に、注意すべき点であり、今後の検討を要する。

5.まとめ

反応槽の設計や合理的管理のためのプロセス解析に役 立てるモデル化の立場より,活性汚泥による有機物酸化, 硝化および脱窒の各反応速度を模凝下水を対象として回 分実験により検討した。供試汚泥はオキシデーション・ ディッチにより培養したものを用いた。し尿を対象とし た反応モデル式を基本として,検討したところ次のよう な点が明らかになった。

(1)有機物酸化,硝化および脱窒の各反応速度は,関与 する因子を Monod 型関数として取り扱うことにより表現 できる。

(2)本研究で提示した反応速度のモデル式およびパラメー

図11 アルカリ度のシミュレーション プロットー測定値,実線-シミュレーション

ターの値を用いて実験値をシミュレートしたところ整合 性が見られ,これらはプロセス解析への適用が可能であ る。

(3)し尿と下水を対象とした場合の相違点は、し尿の場合には有機物酸化および硝化に関して DO の飽和定数は同じ値でもよいが、下水の場合には異なる値を用いる必要がある。また、パラメーターの値は、原水の成分や濃度に寄り大きく異なるので、プロセス解析の適用にあたって検討すべき点である。

図12 モデル式およびパラメータ値変更後の シミュレーション プロットー測定値,実線ー シミュレーション

Res. Rep. of Ube Tech.Coll., No. 33 March 1987

記号説明

X :活性汚泥濃度 (mg/L)

- S :COD 濃度 (mg/L)
- C1 : NH 4-N 濃度 (mg/L)
- C₂ :NO x-N 濃度 (mg/L)
- C₃ : N₂-N (液体換算) 濃度 (mg/L)
- A : アルカリ度 (mg/L)
- DO :溶存酸素濃度 (mg/L)
- Us : COD 最大反応速度定数 (h⁻¹)
- U₁ :硝化最大反応速度定数 (h⁻¹)
- U₂ :脱窒最大反応速度定数 (h⁻¹)
- Ks :COD 飽和定数 (mg/L)
- K₁ : 硝化飽和定数 (mg/L)
- K₂ : 脱窒飽和定数 (mg/L)
- Ko :DO 飽和定数 (mg/L)
- K_A : アルカリ度飽和定数 (mg/L)
- α :脱窒反応に消費される COD の換算係数
- a :除去 COD の汚泥変換率
- b : 硝化による汚泥変換率
- c : 脱窒による汚泥変換率
- d :内性呼吸による汚泥の自己酸化率 (mg/L)
- a' :COD 除去に必要な酸素利用率
- b': 硝化に必要な酸素利用率
- d':汚泥の自己酸化に必要な酸素利用率 (mg/L)
- e : 硝化に必要なアルカリ度の換算係数
- f :脱窒により生成するアルカリ度の換算係数
- K_{La}:総括酸素移動容量係数(h⁻¹)
- DOs:液中の酸素飽和濃度 (mg/L)

引用文献

- 1)石川宗孝,中西 弘,水船清司:"好気性脱窒現象の モデル化に関する研究",衛生工学論文集,19, 196(1983).
- 2)村上定瞭,石川宗孝,中西 弘:"生物学的脱窒素反 応の高能率化に関する研究(I)—生化学反応のモデル 化と動力学的取り扱い(その1)および(その2)", 環境技術,13(4),274(1984),環境技術,13(6), 418(1984).
- 3) Y. Terashima and M. Ishikawa : "Kinetic Analysis of BOD and Nitrogen Removal in an Oxidation Ditch", *Wat.Sci.Tech.*, 17 (Amsterdam), 291(1984).
- 4)石川宗孝,中西 弘,村上定瞭,深川勝之:"オキシ デーシオン・ディッチにおける水処理特性",京都大学 衛生工学研究会 第7回シンポジウム講演論文集, 238(1985).
- 5)石川宗孝:"曝気条件下における窒素除去に関する研究",学位論文(京都大学), p.85(1985).

(昭和61年10月8日受理)