On Some Prime Modules
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Abstract

In (3] Page has defined the notion of prime module. Recently, L. Bican, P. Jambor,
T. Kepka and P. Némec (1] have also defined the prime module by different notion.
In this paper, with reference to the latter definition, we shall define the notions of
several kinds of prime modules, that is, a strongly prime module, a weakly prime
module, an E-prime module, an E’-prime module and an E”-prime module. And then,
we will investigate the relations between these prime modules.

§ (. Introduction

In this paper, with reference to the notion of prime module in the sense of Bican et
al., we shall define the notions of several kinds of prime modules, that is, a strongly
prime module, a weakly prime module, an E-prime module, an E’-prime module and an
E”-prime module,

We shall prove in Proposition 1.2 that the prime module in the sense of Bican et al.
is the prime module in the sense of Page. But the converse is not true (Example 7.1).
Nevertheless, we shall show in Proposition 1.3, if R is semisimple artinian, the converse
holds. And also we shall prove in Proposition 1.2 that strongly prime modules are prime,
prime modules are weakly prime, strongly prime modules are nothing but E’-prime and
also are E-prime, and in Proposition 6.3 that, over a left noetherian ring R, every in-
jective R-module is a direct sum of weakly prime modules (E-prime modules, E”-prime
modules).

§ 1. Definitions

Throughout this note R is an associative ring with identity, a module means a unital
left R-module and R-mod stands for the category of unital left R-modules. As usual,
E(M) will denote the injective hull of a module M,

A preradical » for R-mod is a subfunctor of the identity funcior of R-mod,

For a module @, define a radical k, as

ko(M)U= {Ker f | f & Hom (M, @)}
for each module M, As is well known, %, isa unique maximal one of those preradicals
k for R-mod satisfying 2(Q) = 0.

For two submodules A and B of a module M, we put
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2 Kazuo Shigenaga

A*yB = 3 {f(A) | f € Hom (M, B)}.

We denote by Ann(M) the annihilator ideal of a module M,

Page called a module M prime if Ann(M)=Ann(N) for every non-zero submodule N
of M. And Bican et al. called a module M prime if k, = k, for every mnon-zero sub-
module N of M,

In the following, P-prime module means the prime module in the sense of Page, and
the prime module means the one in the sense of Bican et al..

We now define the notions of several kinds of prime modules. We call a module M

(1) strongly prime(S-prime) if E(M) is prime. Moreover we call a module M

(2) weakly prime(W-prime) if ky = Rewyon,

(3) E-prime if keory = Rrwyy,

(4) E’'-prime if krorn = kv,

(5) E"-prime if ky = krpwy,
for every non-zero submodule N of M,

Example 1. 1.

(1) A module ,Q is P-prime, where Z is the ring of integers and Q is the additive
group of rational numbers,

(2) Each simple module is prime and also E-prime,

(3) The injective hull of each simple module is W-prime.

(4) A simple injective module is S-prime, E’-prime and E"-prime.

Proposition 1. 2.

(1) Every prime module is P-prime,

(2) Every S-prime module is prime and every prime module is W-prime.
(3) Every S-prime module is nothing but E'-prime module.

(4) Every S-prime module is E-prime.

Proof. (1) Let M be a prime module. For any non-zero submodule N of M, we ob-
tain kx(R) = kxy(R) from the definition. It is well known that, for a module L, kz(R)
— Ann (L) holds. Thus Ann (M) = Ann (N) for any non-zero submodule N of M,
Therefore M is P-prime,

(2) Let M be S-prime and N any non-zero submodule of M.
Then the relation E(M) 2 M 2 N implies kzun = kv = ky. Since M is S-prime,
kzun, = kx. Therefore we obtain &, = k,. That is, M is prime. Now let M be prime
and N any non-zero submodule of M. Then E(N) (| M is a non-zero submodule of M,
and so the primeness of M implies ky = krw)on. Hence M is W-prime.

(3) Suppose that M is an S-prime module, Then E(M) is prime and so we have
kron = ky for all non-zero submodule N of M, namely, M is E’-prime.

Conversely, let M be E’-prime. For any non-zero submodule N of E(M), M (1 Nis
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a non-zero submodule of M and so we have kray, < ky < kw~y. However, since M is

E’-prime, we have krun = kwonx. Therefore, kzan = ky and hence M is S-prime.
(4) Let M be S-prime and N any non-zero submodule of M, Then N S E(N) C

E(M) and so we have krun < krpwvy < kn. Since M is S-prime, kzun = ky. This

relation implies that kzary = krvy. Namely, M is E-prime,

Proposition 1. 3. Let M be a module.
(1) If R is semisimple artinian, then every P-prime module is prime.
(2) If M is prime and injective, then it is S-prime.
(3) If M is W-prime and any ncn-zevo submodule N of M is injective, then M is
prime.,
(4) If M is E-prime and any non-zevo submodule N of M is injective, then M is S-

prime.

Proof, (1) It is well known that, for a preradical » and a projective module P, »(P)
= 7v(R)P. Now, let M be a P-prime module and N any non-zero submodule. By Ann
(M) = Ann (N), we have ky,(R) = k~ (R). For any module A4, we have ky (A) =
ky(R)A = ky(R)A = kv(A), since R is semisimple artinian. Therefore ky = kx for
any non-zero submodule N of M, which means M is prime.

(2) Since M is injective, we have E(M) = M, Therefore, E(M) is prime and M is
S-prime.

(3) It follows from assumption that &y = kzw)nxw = kyow = ky for every non-zero
submodule N of M. Hence M is prime.

(4) Let N be any non-zero submodule of E(M) (= M). Since M is E-prime and N
is injective, krw) = krpw), = kxy is obtained, Namely, M is S-prime,

Corollary 1. 4. The following conditions arve equivalent for an injective module M :
(1) M is prime,
(2) M is S-prime,

Corollary 1. 5. For a module M over a semisimple artinian ring R, the following
conditions arve equivalent :

(1) M is prime,

(2) M is P-prime,

(3) M is S-prime,

(4) M is W-prime,

(5) M is E-prime,

(6) M is E"-prime,

ST SRR 285 I F1 57 4 3 )



4 Kazuo Shigenaga

§ 2. Prime modules

The following propositions are due to Bican et al. [1J. In the following we shall give
similar characterizations for our prime modules.

Proposition 2. 1. ({1, Proposition 2. 3)). The following conditions are equivalent
for a module M :

(1) A*yB + 0 for all non-zero submodules A, B & M,
(2) kn(M) = 0 for every non-zero submodule N = M,

B)If 0+ NZ M, then M is isomorphic to a submodule of a direct product of
copies of N,

(4) M is prime,

Proposition 2. 2. ({1, Proposition 2. 4)).

(1) Let N be a non-zero submodule of M, If M is prime then N is prime.

(2) A module M is prime if and only if k, = k, for every non-zero cyclic submodule
Cof M,

(3) Every simple module is prime and every direct sum of copies of a simple module
is prime.

§ 3. Weakly prime modules

Proposition 3. 1. The following conditions ave equivalent for a module M :

(1) A*yw(E(B) " M) =+ 0 for all non-zero submodules A, B — M,

(2) kewyou(M) = 0 for every non-zero submodule N & M,

(3) If 0 = N & M, then M is isomorphic to a submodule of a divect product of
copies of E(N) N M,

(4) M is W-prime.

Proof, (1) implies (2). Suppose that kzvyouw(M) = N’ + 0 for some 0 = N &= M.
Then f(N’') = 0 for every f & Hom (M, E(N) N M) and so N'*x(E(N) 1 M) =0,
a contradiction,

(2) implies (3). See e. g. [2, p. 408].

(3) implies (4). Let 0 N & M be a submodule. Obviously, %ky < kzvyox and
kpvyou(E(N) (Y M) = 0. Since M is isomorphic to a submodule of a direct product of
copies of E(N)( M, we have kgwvyou(M) = 0,

Consequently, ky = kgvyou. Therefore ky = krvyon and M is W-prime,

(4) implies (1). Suppose that A*y(E(B) N M) = 0 for some A(+=0), B(#*0) <X M.
Then f(A)=0 for all f & Hom (M, E(B) (1 M) and so 0 + A & kemyox(M) = ky(M)
= 0, a contradiction,

Res. Rep, of Ube Tech. Coll., No,28 March, 1982
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Proposition 3. 2. A module M is W-prime if and only if ky = ku@you for every non-
zero cyclic submodule C of M.

Proof. The “only if” part is clear. To show the “if” part, let N be any non-zero
submodule of M and x a non-zero element in N. Then M 2 N O Rx andso M 2 E(N)
MM 2 E(Rx) (| M. This implies ky < kzwyonw = Erreyon. By assumption Ry =

krrasyon and hence ky = krpwvyonx. Thus M is W-prime.,

Proposition 3. 3. Let M be a W-prime module and N a non-zero injective submodule
of M. Then N is W-prime,

Proof. For every non-zero submodule L of N, we have k,, = krwyox. Since M 2 N
2 E(L), kNOE(L): kE(L) = kE(L)nM = kM = kE(N)nM = anM = kN and SO N is W*

prime,

Proposition 3. 4. Let M be a module, Then E(M) is W-prime if and only if keoy =
krvy for every non-zevo submodule N of E(M).

Proof., This follows from the relations E(N) & E(E(M)) = E(M) and E(N) (| E(M)
= E(N).

Corollary 3. 5. The following conditions ave equivalent for an injective module M :
(1) M is W-prime,
(2) M is E-prime,
(3) M is E”-prime.

Proposition 3. 6. Let S be a simple module. Then
(1) S is W-prime,

(2) 2.BS s W-prime,

(3) E(S) is W-prime,

Proof. The assertions of (1) and (2) follow from (1, Proposition 2. 4] and Proposition

1. 2 (2.
(3) For every non-zero submodule N of E(S), we have E(N) = E(S). Hence kzw)

= kze) and so E(S) is W-prime by Proposition 3. 4.
§ 4. Strongly prime modules

Proposition 4. 1. The following conditions are equivalent for a module M :
(1) A*zonB + 0 for all non-zero submodules A, B & E(M),
(2) By (E(M)) = 0 for every non-zero submodule N & E(M),
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(3) If 0 + N & E(M), then E(M) is isomorphic to a submodule of a direct product
of copies of N,
(4) M is S-prime,

Proof, This follows from Proposition 2. 1.

Proposition 4. 2. The following conditions are equivalent for a module M :

(1) A*gan B =+ 0 for all non-zero submodules A, B & M,

(2) kx (E(M)) = 0 for every non-zero submodule N — M,

(3) If 0 =N & M, then E(M) is isomorphic to a submodule of a dirvect product of
copies of N,

(4) M is S-prime,

Proof. This is similar to the proof of Proposition 3. 1.

Proposition 4. 3. Let N be a non-zero submodule of an S-prime module M, Then N is

S-prime,
Proof, This follows from Proposition 2. 2 (1).

Proposition 4. 4. Let N be an essential submodule of a module M, Thewr, N is S-prime
if and only if M is S-prime.

Proof, This is clear from the fact that E(N) = E(M).

Proposition 4. 5. A module M is S-prime if and only if kray = ke for every non-zero

cyclic submodule C of M.

Proof. The proof of this proposition is similar to that of Proposition 3. 2. This also

follows from Proposition 2. 2 (2).

§ 5. E-prime modules

Proposition 5. 1. The following conditions are equivalent for a module M :
(1) A*snE(B) + 0 for all non-zero submodules A, B C M,
2) ke (E(M)) = 0 for every non-zervo submodule N & M,
(3) If 0+ N & M, then E(M) is isomorphic to a submodule of a direct product of
copies of E(N),
(4) M is E-prime,

Proof. The proof of this proposition is similar to that of Proposition 3, 1.
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Proposition 5. 2. A module M is E-prime if and only if krory = ke  for every non-
zevo cyclic submodule C of M.

Proof. The proof of this proposition is similar to that of Proposition 3. 2.
Proposition 5. 3. If M is E-prime and N is a non-zevo submodule, then N is E-prime,

Proof, This is clear.

Proposition 5. 4. Let N be an essential submodule of M. Then N is E-prime if and
only if M is E-prime,

Proof, Suppose that N is E-prime. Then for any non-zero submodule K of M, we have
E(INNK) € E(K) & E(M) = E(N) and hence krwox) = ke = keon = kew).

From the assumption it follows that kzv.x, = krw) and hence krx, = krar. Thus M

is E-prime. The “if” part follows from Proposition 5. 3.

Corollaty 5. 5. A module M is E-prime if and only if E(M) is E-prime.
§ 6. Some supplements

Proposition 6. 1. If M is injective and uniform, then M is W-prime.

Proof, For any non-zero submodule N of M, it is clear that E(M) = M = E(N).

Hence we have Exorwy = Ea.
Proposition §. 2. Every simple injective module is S-prime,

Proof, Let S be a simple injective module and N a non-zero submodule of S = E(S).
Then S = N and so we have E(S) = N, Therefore kzwsy = ky.

Proposition 8. 3. Let R be a left noetherian ring. Then every injective R-module is a
divect sum of W-prime modules (E-prime modules, E”-prime modules).

Proof, Every injective module M can be represented as a direct sum of indecomposable
injective modules M,. In this case, each M. is injective and uniform. Hence it is W-

prime (FE-prime, E”-prime).
§ 7. Examples

Example 7. 1. Let Z be the rving of integers and @ the additive group of rational
numbers., Then ,Q is P-prime and W-prime but not prime.

Proof. It is clear that ,Q is P-prime, And it is well known that z@ is injective and
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uniform. Hence ,Q is W-prime. However, since Hom (,Q, ,Z) = 0, we have kz(Q) +
0. Therefore 2@ is not prime,

Example 7. 2. Let S be a simple module with E(S) = S. Then S is prime and E-
prime, but not S-prime.

Proof. Assume that S is S-prime. There is a non-zero homomorphism f of E(S) to S
such that f(S) # 0. We can claim that this homomorphism is an isomorphism. Hence
E(S) = S, a contradiction. Now, we shall claim that S is E-prime. Let S’ be a non-
zero submodule of S. Then S = S’ and kzesy = kresy. This implies that S is E-prime.

Example 7. 3. (H. Katayama). Let Rzg (]E; g) l a, b & K‘}, wheve K is a field.
Then rR is W-prime but noi P-prime.

Proof. It is well known that =R is injective and uniform module, Therefore 2R is W-
prime. Let J ={ (3 9) |b € K}. Then Ann(R) =0 and Ann(/) = J. Hence xR is not
P-prime.

Example 7. 4. (H. Katayama). Let Z be the ring of integers and M = Z X Q, where
Q the additive group of rational numbers. Then M is P-prime but not W-prime.

Proof. It is clear that ,M is P-prime. Consider the cyclic submodule C = Z X< 0 of M.
As is well known E(C) = @ x 0, and so E(C) 1M = ZxX0. Putx = (0, 1) & M.
It is easy to show that f(x) = 0 for all f/ & Hom (¥, E(C) " M). Hence M is not
W-prime.

After all we obtain the following diagram.

E’ -prime module &=2 §-prime module ZZ2Z f-prime module

prime module

A

J//-prime module < o = P-prime module

Acknowledgement
The author is thankful to Professors Y. Kurata and H. Katayama for valuable advices.

References
(1) L .Bican, P, Jambor, T. Kepka and P. Némec. Prime and coprime modules. Fundamenta Math-
ematicae CVI1 (1980), 33—45.
(2] Y. Kurata and H. katayama. On a gencralization of QF-3" rings. Osaka J. Math. 13 (1976),
407—418.
(33 S. Page. Properties of quotient rings. Can. J. Math. Vol XXIV, No. 6 (1972), 1122—1128.
(4) D. W. Sharpe and P. Vamos. Injective modules. Cambridge Univ. Press (1972).

(IHANS64F 9 H16H 52H)

Res. Rep. of Ube Tech. Coll., No.28 March, 1982



