The Distribution of Current in the Cu Electrolyte

Shiro Sakai*, Shinobu Setoguchi** Yoshio Shimagaya***, Kunihiko Harada***

Abstract

Nowadays electrolysis is widely utilized for industrial metal refining, electroplating, and so on. The shape of the electrolytical bath and the intensity of electric current density determine the distribution of electric current in the solution.

But the distribution of electric current is not yet explained in detail.

If we can understand the distribution of electric current, we think it possible to improve the efficiencies of both the experiments and the work of electrolysis. Therefore, as the first attempt, we measured the cell voltage, overvoltage of anode and cathode, and the conductance of the copper solution in order to understand the flow of electric current.

We used an electronic computer in order to analyze the results speedily.

1. Apparatus

The circuit of electrolysis is shown in Fig. 1.

Fig. 1 Circuit of electrolysis

- (1) Potentiometer (TYPE PO-30 DC-POTENTIOMETER SHIMAZU DENKI KEISOKUKI K.K. No. 574037-7)
- (2) Galvanometer (TYPE 2707 YOKOGAWA)
- (3) Cadmium standard cell (TYPE2742 SHIMAZU DENKI KEISOKUKI K.K. No.11602)
- (4) Battery (2 v)
- (5) Saturated calomel electrode
- * The Kyushu Institute of Technology ** The Ube City Fire Station *** The Ube Technical College 宇部工業高等専門学校研究報告 第26号 昭和 55 年 3 月

72 Shiro Sakai, Shinobu Setoguchi. Yoshio Shimagaya, Kunihiko Harada

- (6) Saturated KCl solution
- (7) Salt bridge
- (8) Electrolytical bath
- (9) Thermostat (TYPE MINEDR JUNIOR TOYO CHEMICAL INDUSTRY K.K.)
- (10) Rectifier (TAKASAGO MODEL C-2 35V 2A)
- (11) Voltmeter (TYPE 2051 YOKOGAWA)
- (12) Amperemeter (TYPE 2051 YOKOGAWA)

The dimensions of electrodes are shown in Fig. 3, and the dimensions of electrolytic baths are shown in Fig. 2. (Dimension in mm)

Fig. 2 Electrolytic bath

Fig. 3 Electrodes

We used Kohlrausch bridge (MY-8 SERIAL NO. 82601 YOKOGAWA) in order to measure conductance.

2. Symbols

- a surface-area of electrodes
- l distance between electrodes
- I current
- R resistance
- r specific resistance

EOHM ohmic	drop	by	resistance
------------	------	----	------------

EA electrodes potential of anode

EC electrodes potential of cathods

E cell voltage

EEOHM theoretical ohmic drop given by measured conductence

3. Experiment

(1) Method of measurement of conductance

First of all, we maintained the temperature at $55^{\circ}C$.

And we measured the cell constant by the conductance filled with 0.1 N Kcl solution.

Then we measured the conductance by the one filled with copper solution in order to calculate specific resistance.

(2) Method of electrolysis of copper solution

We measured single electrode potentials of both anode and cathode, and cell voltage when current density became 0.5, 1.0, and 2.0 A/dm^2 .

Mathematically, EOHM may be defined by the equation.

EOHM = E - (EA - EC)

Now, according to Ohm's law, mathematically EEOHM may be evaluated as

 $EEOHM = R \cdot I = I \cdot r \cdot \ell / a = l \cdot r \cdot \ell / 9.0$

where "a"is 9.0cm², and "r" is obtained by measurement of conductance.

In the final discussion, we determined the relation between current density and electrode distance.

• SOLUTION Copper sulfate solution (approximately concentration of ; $Cu^{2+} 40g/\ell$)

• TEMPERATURE 55°C

• CURRENT DENSITY 0.5, 1.0, 2.0A/dm²

4. Result

(1) Result of measurement of the specific conductance.

 $\mathbf{k} \cdot \mathbf{w} = \mathbf{c}$

 $K = 0.02120 / ohm \cdot cm$

Where w is the resistance of 0.1 N-KCl solution, c is the cell constant, and k is the specific conductance at 55°C.

w = 20.0330 ohm

Therefore,

c = 0.02120 X 20.0330 = 0.424678 / cm

Then,

r = 1/k = w/c

In case of copper solution, w is 7.5757.

 $r = 7.5757 / 0.424678 = 17.6604 (ohm \cdot cm)$

For example, when the distance between electrodes is 15 cm, and current density is 0.5 A/dm²

EEOHM = $I \cdot r \cdot \ell/a = 0.045 \text{ X} 17.6604 \text{ X} 15/9 = 1.3245 \text{ V}.$

(2) Result of measurement of E, EA, EC

The results of measurement are shown in Table. 1, 2, and 3.

We have had the experiences three times.

	Table. 1		
CURRENT DENSITY = 0.5		SMALL SIZE	
DISTANCE	Е	EA	EC
5 5 10 10 10 15 15 15 20 20 20 20 25 25 25 25	0.45 0.45 0.40 0.69 0.68 1.30 1.15 1.15 1.45 1.45 1.50 1.90 1.90	$\begin{array}{c} 0.0987\\ 0.0977\\ 0&1000\\ 0.1024\\ 0.1013\\ 0.1013\\ 0.1017\\ 0.1094\\ 0.1061\\ 0.1041\\ 0.1234\\ 0.1239\\ 0.1289\\ 0.0948\\ 0.1025\\ 0.1029\end{array}$	$\begin{array}{c} 0.0679\\ 0.0678\\ 0.0680\\ 0.0490\\ 0.0491\\ 0.0460\\ 0.0410\\ 0.0384\\ 0.0440\\ 0.0650\\ 0.0670\\ 0.0659\\ 0.0667\\ 0.0662\end{array}$
CURRENT DENSITY = 1.0		SMALL SIZE	
DISTANCE	Ε	EA	EC
5 5 5 10 10 10 10 15 15 15 20 20 20 20 25 25 25 25	0.74 0.74 1.36 1.36 2.30 2.17 2.22 2.68 2.75 2.70 3.70 3.70 3.70	$\begin{array}{c} 0.1083\\ 0.1096\\ 0.1096\\ 0.1016\\ 0.1010\\ 0.1030\\ 0.1030\\ 0.1030\\ 0.0893\\ 0.1190\\ 0.1438\\ 0.1389\\ 0.1469\\ 0.1049\\ 0.1037\\ 0.1053\end{array}$	$\begin{array}{c} 0.0662\\ 0.0635\\ 0.0674\\ 0.0655\\ 0.0655\\ 0.0670\\ 0.0193\\ 0.0203\\ 0.0214\\ 0.0680\\ 0.0660\\ 0.0660\\ 0.0648\\ 0.0656\\ 0.0698\\ 0.0633\\ \end{array}$
CURRENT DENSITY = 2.0		SMALL SIZE	
DISTANCE	Ε	EA	EC
5 5 5 10 10 10 15 15 15 20 20 20 20 25 25 25	1.33 1.34 1.34 2.75 2.78 2.83 4.20 4.20 4.20 4.20 5.42 5.20 5.30 7.60 8.00 7.80	0.1112 0.1130 0.1114 0.1061 0.1051 0.1055 0.1300 0.1120 0.1280 0.1354 0.1386 0.1328 0.1059 0.1033 0.1029	0.0721 0.0671 0.0718 0.0609 0.0619 0.0586 0.0300 0.0410 0.0382 0.0648 0.0660 0.0671 0.0612 0.0613 0.0618
	Table. 2		
CURRENT DENSITY = 0.5		MIDDLE SIZE	
DISTANCE	E	EA	EC
5 5 10 10 10 15 15	0.23 0.23 0.22 0.44 0.44 0.40 0.54 0.54	0.0929 0.0972 0.0970 0.1167 0.1160 0.1138 0.0996 0.1001	0.0576 0.0520 0.0537 0.0450 0.0455 0.0458 0.0715 0.0749

Res. Rep. of Ube Tech. Coll., No.26 March, 1980

15 20 20 20 25 25 25 25	0.54 0.65 0.65 0.65 0.78 0.78 0.78	0.0983 0.0944 0.0940 0.0943 0.1084 0.1096 0.1124	0.0746 0.0666 0.0647 0.0621 0.0713 0.0700 0.0684
CURRENT DENSITY = 1.0	MIDE	DLE SIZE	
DISTANCE	Ε	EA	EC
5 5 5 10 10 10 10 15 15 15 20 20 20 20 20 20 25 25 25	0.40 0.40 0.72 0.72 0.72 0.94 0.93 0.92 1.14 1.14 1.14 1.14 1.36 1.35 1.35	0.0930 0.0980 0.0930 0.1123 0.1101 0.1116 0.1039 0.1015 0.1022 0.0961 0.0990 0.1001 0.1035 0.1277 0.1322	0.0568 0.0531 0.0531 0.0479 0.0504 0.0549 0.0689 0.0735 0.0728 0.0675 0.0650 0.0650 0.0660 0.0590 0.0600 0.0564
CURRENT DENSITY = 2.0	MIDE	DLE SIZE	
DISTANCE	E	EA	EC
5 5 5 10 10 10 10 15 15 15 20 20 20 20 25 25 25	0.73 0.73 1.34 1.34 1.34 1.83 1.82 1.81 2.35 2.35 2.35 2.35 2.35 2.78 2.78 2.78	0.0934 0.0959 0.0973 0.1085 0.1110 0.1066 0.1090 0.1133 0.1076 0.1057 0.1019 0,1000 0.1043 0.1028 0.1004	0.0648 0.0649 0.0627 0.0515 0.0507 0.0483 0.0689 0.0656 0.0659 0.0677 0.0615 0.0647 0.0593 0.0647
	Table. 3	5	
CURRENT DENSITY = 0.5	LARG	SE SIZE	
DISTANCE	E	EA	EC
5 5 5 10 10 10 15 15 15 15 20 20 20 20 25 25 25	0.18 0.18 0.30 0.30 0.28 0.34 0.35 0.35 0.38 0.45 0.45 0.45 0.45 0.45 0.54 0.54	$\begin{array}{c} 0.0954\\ 0.0941\\ 0.0936\\ 0.1012\\ 0.1032\\ 0.1014\\ 0.1006\\ 0.0985\\ 0.0985\\ 0.0985\\ 0.0985\\ 0.0857\\ 0.0888\\ 0.0890\\ 0.0974\\ 0.0942\\ 0.0929 \end{array}$	$\begin{array}{c} 0.0785\\ 0.0772\\ 0.0797\\ 0.0614\\ 0.0612\\ 0.0616\\ 0.0673\\ 0.0655\\ 0.0655\\ 0.0655\\ 0.0655\\ 0.0645\\ 0.0623\\ 0.0646\\ 0.0629\\ 0.0704\\ 0.0682\\ 0.0685\\ \end{array}$

Fig. 4 EEOHM/FOHM against distance between electrodes

Fig. 5 EEOHM / EOHM against distance between electrodes

Fig. 6 EEOHM / EOHM against distance between electrodes

Fig. 7 EEOHM/EOHM against distance between electrodes

Fig. 8 EEOHM/EOHM against distance between electrodes

Fig. 9 EEOHM / EOHM against distance between electrodes

Then, we used the mean of the three results of measurements of E, EA, and EC in order to draw a true conclusion.

(3) Caluculation of EEOHM / EOHM

We calculated EEOHM / EOHM from the data by the computer (TOSBAC-3400).

Then, the relation between EEOHM / EOHM and electrode distance is shown in Fig. 4, 5, 6, 7, 8, and 9.

Fig. No.	Kind of eleetrolytic cell	size	Kind of current density	magnitude of current density
4	1	small size	3	0.5 1.0 2.0
5	1	middle size	3	0.5 1.0 2.0
6	1	large size	3	0.5 1.0 2.0
7	3	small size middle size large size	1	0.5
8	3	small size middle size large size	1	1.0
9	3	small size middle size large size	1	2.0

Table. 4

5. Discussion

The purpose of this reseach is to investigate the courses in which ion moves in solution. We made several graphs in order to analyze the datas.

The results of measurement are shown in Fig. 4, 5, 6, 7, 8, and 9 respectively.

Table. 4 shows the experimental conditions in the 6 figures (No. 4, 5, 6, 7, 8, 9).

We think three hypotheses exist about the flow of current in solution.

The three hypotheses are as follows:

Hypothesis (1)

Copper ion runs straight from anode to cathode.

Hypothesie (2)

Copper ion runs all over the electrolytical bath.

Hypothesis (3)

Copper ion runs in a curve from anode to cathode.

Therefore, the trace is like a magnetic line.

One of these three hypotheses is the conclusion.

Hypothesis (1)

If copper ion runs straight, it flows only in the shaded portion in Fig. 10.

Fig. 10 (We look down the electrolytic bath.)

Fig. 11 (We look down the electrolytic bath.)

Therefore, EEOHM / EOHM should be approximately 1.000.

EEOHM / EOHM in Fig. 4 is approximately 1.000. So, Fig. 4 proves Hypothesis (1).

But, Fig. 5, 6, 7, 8, and 9 do not prove Hypothesis (1), because FEOHM / EOHM is over 2.000 in these figures.

Then, Hypothesis (1) is contradictory doubtlessly.

Hypothesis (2)

If copper ion runs all over the electrolytical bath, EEOHM / EOHM should be 5.444 (in a large-size one), 2.777 (in a middle-sized), and 1 000 (in a small-sized) regardess of current density.

But in a large-sized one EEOHM is less than 5.444, and in a middle-sized less than 2.777.

Or, copper ion never runs in the direction shown in Fig. 11, as far as the force of cathode attracting cation remains.

Та	ble.	5

size	surface -area	ratio
small	9 cm ²	1.000
middle	25cm ²	2.777
large	49 c m ²	5.444

Then Hypothesis (2) is contradictory donbtlessly.

Hypothesis (3)

We can explain in a large-sized one EEOHM / EOHM does not become 5.444, and in a middle-sized not 2.777 if copper ion runs in a curve.

In a small-sized one, the width and height of an electrode are the same as those of surface area of electrolytical bath.

As copper ion can not run in a curve, it runs straight.

For that reason, we think EEOHM / EOHM became approximately 1.000.

This hypothesis is in accord with the results.

(昭和54年4月13日受理)