A Note on M-Saturations I

Kazuo Shigenaga*

Abstract

The purpose of this note is two-fold. First we define, for a fixed module M, the M-saturation of a left Gabriel topology and investigate the relation between localizations determined by the topology and its M-saturation. As a consequent we give a generalization of a result due to Popescu and Spircu (5). Secondly, in a commutative ring R, we study the relation between the saturation of a given multiplicative system and the R-saturation of the topology corresponding to the original system.

§ 1. Introduction

First, as preliminaries, we define the radical k_Q for a given module Q. Using this we look at the notion of M-density again.

In the second place, we define the M-saturation of a left Gabriel topology and point out the relation between localizations determined by the topology and its M-saturation.

Finally, in a commutative ring R we study the relation between the saturation of a multiplicative system and the R-saturation in our sense of the topology corresponding to the original system. We provide an example which shows that the former need not imply the latter.

§ 2. Preliminaries

Let R be a ring with identity. By R-mod we denote the category of unital left R-modules. For a left R-module Q, let us define

$$k_Q(M) = \bigcap \{ \operatorname{Ker}(f) \mid f \in \operatorname{Hom}_R(M, Q) \}$$

for each R-module M. Then k_Q is a radical of R-mod such that $k_Q(Q) = 0$. Moreover it is a unique maximal one of those preradicals r of R-mod for which r(Q) = 0, and $k_{E(Q)}$ is a unique maximal one of those left exact preradicals r of R-mod for which r(Q) = 0. The torsion class $T(k_{E(Q)})$ of $k_{E(Q)}$ is just the class $\{RM \mid \operatorname{Hom}_R(M, E(Q)) = 0\}$, while the torsion-free class $F(k_{E(Q)})$ of $k_{E(Q)}$ consists of all left R-modules which can be embedded in a direct product of copies of E(Q).

For a left R-module M, we call a left ideal K of R M-dense, following Shock (6), if $Km \neq 0$ for all $0 \neq m \in E(M)$. It is easy to see that K is M-dense if and only if $\operatorname{Hom}_R(R/K, E(M)) = 0$, or equivalently, $R/K \in T(k_{E(M)})$. Hence the set $\{K \subset RR \mid K \text{ is } M\text{-dense}\}$ is nothing but the left Gabriel topology corresponding to $k_{E(M)}$.

For all undefined notions about torsion theories we refer to Stenström (8).

§ 3. M-saturated Gabriel topologies

Throughout this section we fix a left R-module M. For a submodule M' of M, we denote by $L_{M'}$ the left Gabriel topology consisting of all M/M'-dense left ideals of R, i. e., $L_{M'} = L(k_{E(M/M')})$, where, for a left exact preradical t of R-mod, L(t) means the left linear topology corresponding to t.

^{*} 宇部工業高等専門学校数学教室

 $k_{E(M)}$ is a unique maximal one of those left exact preradicals r of R-mod for which r(M) = 0. So we obtain

Proposition 1. Let t be a left exact preradical of R-mod. Then t(M) = 0 if and only if $L(t) \subset L(k_{E(M)})$. From this proposition we have the following Spulber's results.

Corollary 2 ((7, Proposition 3.6)). For any left exact radical t of R-mod we have $L(t) \subset L_{t(M)}$. Proof. Since t(M/t(M)) = 0, Proposition 1 says that $L(t) \subset L(k_{E(M/t(M))}) = L_{t(M)}$.

Corollary 3 ((7, Proposition 3, 7)). For a nonsingular module M each essential left ideal of R is M-dense.

Proof. For the left exact preradical Z, the corresponding left linear topology L(Z) is $\{K \subset RR \mid K \text{ is essential in } R\}$. So if K is essential in R, then $K \in L(k_{E(M)})$ by Proposition 1. Thus K is M-dense.

Definition ((7)). A left Gabriel topology L on R is M-saturated if for any left Gabriel topology L' such that t(M) = t'(M), $L' \subset L$ holds, where t, t' are left exact radicals of R-mod corresponding to L, L' respectively.

Spulber gives the following characterization of this concept.

Theorem 4 ([7, Theorem 4.1]). For a left exact radical t of R-mod, the following statements are equivalent:

- (a) L(t) is M-saturated.
- (b) $L(t) = L_{t(M)}$.

Proof. (a) \Longrightarrow (b). Take any $x \in k_{E(M/t(M))}$ (M). For the canonical R-homomorphism π from M to M/t(M), we have $\pi(x) = 0$. So $x \in t(M)$ and hence $k_{E(M/t(M))}(M) \subset t(M)$. On the other hand, according to Corollary 2, $L(t) \subset L_{t(M)}$, i. e., $t \leq k_{E(M/t(M))}$. Hence we have $k_{E(M/t(M))}(M) = t(M)$. Since $L_{t(M)} \subset L(t)$ by the definition of M-saturatedness, we see that $L_{t(M)} = L(t)$.

(b) \Longrightarrow (a). Lat L' be a left Gabriel topology with left exact radical t' such that t(M) = t'(M). Corollary 2 implies that $L' \subset L_{t'(M)} = L_{t(M)} = L(t)$. This means that L(t) is M-saturated.

Corollary 5. For a left Gabriel topology L with left exact radical t there exists a unique M-saturated left Gabriel topology L' with left exact radical ι' such that $L \subset L'$ and t(M) = t'(M).

Proof. We put $L' = L_{t(M)}$. By Corollary 2, we have $L \subset L'$ and by the proof of Thorem 4 L' is M-saturated and t(M) = t'(M) folds. To prove the uniqueness, we assume that L'' is an M-saturated left Gabriel topology with left exact radical t'' such that $L \subset L^p$ and $t(M) = t^p(M)$. Since L' is M-saturated with t'(M) = t''(M), then $L' \subset L'$ and since L'' is M-saturated with $t'(M) = t^p(M)$, then $L' \subset L''$. Hence we conclude that L' = L''.

Definition. We call the M-saturated left Gabriel topology L' in Corollary 5 the M-saturation of L. **Proposition 6.** Let L be a left Gabriel topology with left exact radical t and L' its M-saturation. Then t(M) = 0 if and only if $L' = \{K \subset RR \mid K \text{ is } M\text{-dense}\}.$

Proof. If t(M) = 0, then $L' = L_{t(M)} = L(k_{E(M)})$. Conversely if $L' = L(k_{E(M)})$, then $t(M) = t'(M) = k_{E(M)}(M) = 0$.

For example if $L \subset \{K \subset_R R \mid K \text{ is } M\text{-dense}\}$, then $t(M) \subset k_{E(M)}(M) = 0$. So $\{K \subset_R R \mid K \text{ is } M\text{-dense}\}$ is just the M-saturation of L.

Theorem 7. Let L be a left Gabriel topology with left exact radical t and L' its M-saturation. Then the module of quotients $M_{L'}$ of M with respect to L' contains M_{L} , that of M with respect to L, and $M_{L} = \{x \in M_{L'} \mid ((M/t(M)): x) \in L\}$ holds.

Proof. It is well known that the module of quotients M_L of M with respect to L is expressed as $M_L = \{x \in E(M/t(M)) \mid ((M/t(M)) : x) \in L\}$. Let t' be the left exact radical corresponding to L'. Since

t(M) = t'(M) and $L \subset L'$, we can see that $M_L \subset M_{L'}$ and $M_L = \{x \in M_{L'} \mid ((M/t(M)) : x) \in L\}$.

Corollary 8 ((5, pp. 44-45)). Let L be a left Gabriel topology with left exact radical t and L' its R-saturation. Then R_L is isomorphic to the double commutator R'' of E(R/t(R)) and R_L is isomorphic to $\{f \in R'' \mid ((R/t(R)) : f) \in L\}$.

Corollary 9. Let L be a left Gabriel topology with left exact radical t and L' its M-saturation. If t(R) = R, then the module of quotients M_L of M with respect to L coincides with $M_{L'}$, that of M with respect to L'.

Proof. By Corollary 2 and Theorem 4, we see that $L' = L_{t(M)}$ and $L \subset L'$. Since R is torsion, L consists of all left ideals of R. Therefore we have L = L' and $M_L = M_{L'}$.

§ 4. Saturations of multiplicative systems

Throughout this section we assume that R is commutative.

Definition. A subset S of R is called a multiplicative system in R if

- (1) $a, b \in S \Longrightarrow ab \in S$, and
- (2) $0 \oplus S$.

Proposition 10. If S is a multiplicative system in R, then $L = \{K \subset {}_RR \mid K \cap S \neq \emptyset\}$ is a left Gabriel topology.

Proof. Clear.

Definition ($\{4\}$). For a multiplicative system S in R, the set $\overline{S} = \{x \in R \mid xy \in S \text{ for some } y \in R\}$ is the saturation of S.

Definition ((1)). A multiplicative system S in R is said to be saturated if $ab \in S$, then $a \in S$ and $b \in S$.

Lemma 11. The saturation \overline{S} of a multiplicative system S is a smallest saturated multiplicative system containing S.

Proof. Obviously \overline{S} is a multiplicative system containing S. We shall point out that \overline{S} is saturated. We assume that either $a \in \overline{S}$ or $b \in \overline{S}$. If $a \in \overline{S}$, then by definition $ax \in S$ for all $x \in R$. So we have $(ab)c = a(bc) \in S$ for all $c \in R$ and thus $ab \in \overline{S}$. Next let S' be a saturated multiplicative system containing S. For any $a \in \overline{S}$, there exists $b \in R$ such that $ab \in S \subset S'$. Since S' is saturated, a is in S'. This implies that $\overline{S} \subset S'$. Therefore, \overline{S} is a smallest saturated multiplicative system containing S.

Proposition 12. Let S be a multiplicative system in R. If S is contained in the set T of all regular elements of R, then

- (1) the saturation \overline{S} of S is also contained in T, and
- (2) any ideal K of R with $K \cap S \neq \phi$ is R-dense.

Proof. (1) The set T is a saturated multiplicative system containing S. So the proof of (1) follows from Lemma 11.

(2) Take s in $K \cap S$. For any nonzero element x in E(R) we have a nonzero element ax in $Rx \cap R$ for some a in R. Since $ax \neq 0$ and s is regular, $0 \neq s(ax) = (sa)x \in Kx$. So K is R-dense.

Using this Proposition we see that the Gabriel topology $L = \{K \subset R \mid K \cap S \neq \emptyset\}$ corresponding to S is contained in $\{K \mid K \text{ is an } R\text{-dense ideal}\}$ and by Proposition 6the R-saturation L' of L is precisely the set $\{K \mid K \text{ is an } R\text{-dense ideal}\}$.

Corollary 13. For a domain R, an ideal K of R is R-dense if and only if $K \neq 0$. Proof. Clear.

Proposition 14. Let S be a multiplicative system in R and S its saturation. Then the Gabriel topology $L = \{K \subset R \mid K \cap S \neq \emptyset\}$ corresponding to S coincides with the Gabriel topology $\overline{L} = \{K \subset R \mid K \cap \overline{S} \neq \emptyset\}$ corresponding to \overline{S} .

Proof. Let K be an ideal in \overline{L} , and take a nonzero element a in $K \cap \overline{S}$. We can fined $b \in R$ such that $ab \in S$. The element ab is in K and hence $K \cap S \neq \phi$. Thus we have $\overline{L} \subset L$.

Frome now on, we assume that R is a commutative Noetherian ring. In this case, according to Stenström (8), for every Gabriel topology L there is a subset P of Spec (R) such that $L = \{K \mid V(K) \cap P = \emptyset\}$, where $V(K) = \{p \in \text{Spec } (R) \mid K \subset p\}$.

Theorem 15. Let S be a multiplicative evistem in R and \overline{S} its saturation. We denote by L and \overline{L} the corresponding Gabriel topologies as above. We express the R-saturation L' of L as $L' = \{K \mid V(K) \cap P = \phi\}$ for some $P \subset Spec(R)$. Then

- (1) $S' = R \bigcup P$ is a saturated multiplicative system containing \overline{S} .
- (2) The Gabriel topology $L'' = \{K \subset R \mid K \cap S' \neq \emptyset\}$ corresponding to S' is contained in L'.
- (3) If the following condition (*) is satisfied, then $L' \subset L''$ and thus we have L' = L''.
- (*) If $K \subset \bigcup P$, then $K \subset p$ for some $p \in P$.

Remark. If P is finite, then the condition (*) is satisfied as is well-known.

- **Proof.** (1) We only show that $\overline{S} \subset S'$. Let s be any element in \overline{S} . If s is in $\bigcup P$, then there is a prime ideal p in P such that $s \in p$ and so $p \cap \overline{S} \neq \phi$. This implies that $p \in \underline{L} = L \subset L'$ and $V(p) \cap P = \phi$. But this is a contradiction. Thus $s \in D \cap B$.
- (2) Let K be an ideal of R such that $K \cap S' \neq \phi$. There is an element s in $K \cap S'$. Since every ideal of V(K) contains s and any ideal of P dose not contain s, $V(K) \cap P = \phi$. Thus we have $K \in L'$.
- (3) Let K be an arbitrary element in L'. Then $V(K) \cap P = \phi$. Consequently if p is in P, then p is not in V(K) and hence K is not contained in p. By the condition (*), K is not contained in $\cup P$. Therefore, there exists an element a in K such that $a \in V$, thus $a \in K \cap S'$, which shows that $K \in L^p$.

Example 16. Let R be the ring of integers. The subset $S = \{1\}$ of R is a multiplicative system and its saturation \overline{S} is the set $\{1, -1\}$. The Gabriel topologies L and \overline{L} corresponding to S and \overline{S} coincide and are equal to $\{R\}$. The R-saturation L' of L is of the form $\{K \mid K \text{ is an } R\text{-dense ideal}\} = \{K \mid K \neq 0\}$ and is also expressed by $F_P = \{K \mid V(K) \cap P = \emptyset\}$ for some P. However we can claim that $P = \{0\}$. For if there exists $(p) \neq 0$ in P, then (p) is in L'. Hence we have $V((p)) \cap P = \emptyset$, a contradiction. As in Theorem 15, we make the multiplicative system S', i. e., $S' = R - \bigcup P = R - (0)$.

Surely $S \subsetneq \overline{S} \subsetneq S'$, but P is finite and so L' = L'' by Theorem 15 (3), where L'' is the Gabriel topology

corresponding to S'.

After all we can conclude that the Gabriel topology corresponding to the saturation of a multiplicative system need not coincide in general with our R-saturation of the Gabriel topology corresponding to the original multiplicative system.

Acknowledgement

The author is grateful to Professor Y. Kurata for careful guidances and adovices.

References

1) M. F. Atiyah and L. G. Macdonald: Introduction to Commutative Algebra, Addison-Wesley, 1969.

- 2) P. Gabriel: Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- 3) Y. Kurata and H. Katayama: On a generalization of QF-3' rings, Osaka J. Math. 13 (1976), 407—418.
- 4) M. D. Larsen and P. J. McCarthy: Multiplicative Theory of Ideals, Academic Press, New York and London, 1971.
- 5) N. Popescu and T. Spircu: Quelques observations sur les épimorphismes plats (à gauche) d'anneaux, J. Algebra 16 (1970), 40-59
- 6) R. C. Shock: Injectivity, Annihilators and orders, J. Algebra 19 (1971), 96-103.
- 7) D. Spulber: On localizing system of M-dense left ideals, Bull. Math. Soc. Sci Math. R. S. Roumanie, 18 (66) (1974), 203-206.
- 8) B. Stenström: Rings of Quotients, Springer Verlag, Berlin Heidelberg New York, 1975.

(昭和52年9月2日受理)