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                                         Abstract

  Our purpose of this note js， using a concept of c-essentjal extensions， to study some basic properties

concerning essential extensions of modules in a torsion theory. 

                                       Introduction

  For a fixed left exact radicalσon R-mod， a moduleルf is called aσ・essential extension of a submodule

N， if Miis essential over N and M/N E T.  ln this paper 'we study some basic properties concerning

c-essential extensions of modules.  We treat o・一uniform modules， o-atomic mod. ules and a-critical left

ideals. 

                              Essential extensions of modules

  Throughout this paper， R will mean a ring with identity 1 and modules will mean unital left

R-modules. 

  We denote by R-mod the category of all modules. 

  For a left exact radical 6 on R-mod， we associate a hereditary torsion theory (T， F) for R-mod， and

an idempotent filter . t［;. 

  Basic properties of torsion theories used in this paper may b e found in ( 1 ) . 

  A module M is said to be a o-essential extension of a submodule N jf，

  (1) M is an essential extension of N， and

  (2) ノVisσ一〇penjn M， (i. e. ，ル1/ノV∈T). 

  A non-zero module M is said to be d-uniform jf M is a o-essential extension of every non-zero sub-

module. 

  Lemma 1.  Let L， . M and N be modules with L C M C N.  if M is a a・essential extension of L and N

is aσ一ε55θ繍1烈επ3'・〃・！ルf・'伽Nis aσ一θ∬ential ex'ens'・π・μ， and・・π・ε・3め，. 

  Proof.  Assume that M and N are a-essential extensjons of L and M respectively.  Then it is clear

that N is an essential extension of L.  From the exact sequence O一一〉 MIL 一一〉 N/L一〉 N/M一一一＞

O， it follows that N/L E T， i. e. ， L is d-open in N. 

  Conversely， assume that IV is aσ・essential extension of L.  It is clear thatルI is an essentjal extension

of L and N is an essential extension of M.  Since the sequences O・一〉 M/L一 N/L and IV/L 一一一〉

ノV/M 一一一＞O are exact， we have M/L∈ T and IV/M∈T. 

  From the above lemma， we see that every non-zero submodule and every a-essentjal extension ot' a

o-uniform module are again o-uniform. 

  A module is said to be o-complete， if jt has no proper a-essential extensions. 

Proposition 2.  For every module M， there is a if・一essential extension M of M which is a-complete. 

This extension is unique up to isomorphism over M.  M is called the a-completion of M. 
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  Proof.  We can construct an extension M of M by MIM :a(E(M)/M)， where E(M) denotes

the injective hull of M.  S孟nce M⊂、砺⊂E(M) and E(ルの js an essential extension ofル1， M is an

essential extension of M， and moreover， M/M is in T.  Thjs means that M is a d-essential extension

of M. 

  Next， we shall show that M is c-complete.  Let H be a d-essential extension of M.  We may assume

that H is contained in E(. M).  Since Hr/M E T， we obtain that H/M c a (E(M)/M) ＝＝ M/M， so that

？ii＝＝ H. 

  It remains to show that . ili is unique.  To this end， assume that U is any if-essential extension of M

and is・σ一complete.  Since M⊂σ⊂E(M)and U，/M∈T， we haveσ/ル1⊂M/M， i. e. ，σ⊂巫・

Using Lemma 1， M js a d-essential extension of U.  Thus U＝＝ M because of the d-completeness of U. 

  A module E is called d-in/'ective if for any I E . ，C and any R-homomorphjsm f 6コ口I to M， there is

an R-homomorphismアof R to M extending f，

  Proposition 5. /1〃iodule M isσ一complete if and oめif M isσ一in/ective. 

  Proof.  Let M be o-injective and let M' be a c-essential extension of M.  The sequence O一〉 M一＞

M'一〉 M'/M一＞O is exact and M'/M E T.  Hence there exists some module X such that M'＝ MeX. 

But M' . is an essential extension of M and so we obtain M'＝ M. 

  Conversely， let I C . C and let f be an R-homomorphism of I to M.  By the injectivity of E(M)，

there exists an R-homomorphism f of R to E(M) extendi'ng f.  We put f'(1)＝x and show that x E M. 

正etψbe the mapPing from R to(Rx＋M)/M defined by q(r);rx＋M for r∈R.  Then ker q＝

(ル1:xうand R/ker q∈≡(Rx＋ル1)/ルf.  For any a∈1，((ルf:x):α)＝(ルf:ax)＝・R∈. ∠:'・slnce ax

＝. ｝一(の＝∫(a)∈. 91・tjr.  By the property of∠'ln〔1，P，7〕we have(ル1:x)∈∠'.  Thus(Rx十/・の/M

∈T，and so Rx十Mis aσ・essential extension of M.  By assumption、M＝Rx＋M.  Therefore x∈M. 

  Propos三tion 4.  1アノレf isσ一in/eetiye and石●(ルのisσ一uniform， then M is inブective. 

  Proof.  Sinee M is a-injective， E(M)/M E F (see Lambek (1) ).  On the othere hand， s ince E(M)

is if-uniform， we have E(M)/M C T.  Thus E(M)＝＝Mas desired. 

  Proposition 5.  Let M be a uniform module.  Then M is a-uniform if and on！y iL . for any non-zero

element m of M， Rm is a-uniform. 

  Proof.  The ''only if'' part is obvjous.  To prove the.  C''if'' part， assume that M is not o-uniform. 

Then there is some non;zero submodule N of M such that M is not a c-essential extension of N.  Since

Mis uniform，1V is Ilotσ一〇pen inルt.  There exists a proper subrnodule L of M such thatσ(M〃〉)＝

LIN， and O ＝￥ MIN:i！(M/N)/6(M/N) (一 F.  Take an element m in MKL.  Since Rm/(Rm n L) is jsomor-

phic to a submodule of M/L， Rm/(Rm fi L) E F.  On the other hand， M is uniform and L ＃ O， so

we have Rm∩五キ0. 

  Hence Rm/(Rm n L) E T by assumption.  Thjs impljes that Rm/(Rm A L) C T n F ＝O and Rm＝

Rm A L.  Thus m E L， a contradiction. 

  A left ideal 1 of R is called d-critical， if R/1 js a-uniform.  Thus 1 js o-critical if and only if R/1 is an

essential extension of J/1 and R/」(一T， for all left ideals 」 properly containing 1. 

  A module M is called c-atomic if

  (1)ルIisσ一uniform and

  (2) M is a-complete. 

  By the above definition， we have the following proposition. 

  Proposition 6. 〃'ルt isσ一uniform， then冴isσ一ato〃lie.  In particular，ヴ1is aσ一critical 1θノンideal of R・

then (R/1) is o・atomic. 

  Moreover， we can prove the converse of this proposition. 
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  Proposition 7.  Let M be a o-atomic module.  Then there e xists a c-critical left ideal 1 of R such that

M is isomorphic to (RII). 

 Proof.  For any m(キ0)inル1， let 1＝(0:m).  Then R/1 is isomorphic to Rm.  Since M isσ一uniform，

Rm is if-uniform.  Thus， 1 is d-critical.  Moreover M is a o-essential extension of Rm.  Hence we have

M主(R/1). 

 Proposition 8.  The following statements are equivalent for a non-zero module M:

  (a) ，IV4 is o-uniJbrm. 

  (b)  ルtisσ一uni/br〃1. 

  (C) Me is d-atomic. 

 Proof.  Obvious. 

 Proposition 9.  The foltowing statements are equivalent for two a-critical left ideals 1 and 」:

  (a) 1 and J are re lated (i. e. ， if (1 : a) ＝ (J : b) fbr some a E R XI and b E R NJ) . 

  (b) A non-zero submodule of R/1 is isomorphic to a submodule of R/J. 

  (c) (R/1) ｛iiE (R/J). 

 Proof.  The proof is similar to that of Storrer (2， Proposition 2.  3)， so we omit the proof. 
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