Essential Extensions of Modules in a Torsion Theory

Kazuo Shigenaga

Abstract

Our purpose of this note is，using a concept of σ－essential extensions，to study some basic properties concerning essential extensions of modules in a torsion theory．

Introduction

For a fixed left exact radical σ on R－mod，a module \boldsymbol{M} is called a σ－essential extension of a submodule N ，if M is essential over N and $M / N \in \mathbf{T}$ ．In this paper we study some basic properties concerning σ－essential extensions of modules．We treat σ－uniform modules，σ－atomic modules and σ－critical left ideals．

Essential extensions of modules

Throughout this paper，R will mean a ring with identity 1 and modules will mean unital left R－modules．
We denote by R－mod the category of all modules．
For a left exact radical σ on R－mod，we associate a hereditary torsion theory（ \mathbf{T}, \mathbf{F} ）for R－mod，and an idempotent filter \mathcal{L} ．

Basic properties of torsion theories used in this paper may be found in［1〕．
A module M is said to be a σ－essential extension of a submodule N if，
（1）M is an essential extension of N ，and
（2）N is σ－open in M ，（i．e．，$M / N \in \mathbf{T}$ ）．
A non－zero module M is said to be σ－uniform if M is a σ－essential extension of every non－zero sub－ module．

Lemma 1．Let L, M and N be modules with $L \subset M \subset N$ ．If M is a σ ．essential extension of L and N is a σ－essential extension of M ，then N is a σ－essential extension of L ，and conversely．

Proof．Assume that M and N are σ－essential extensions of L and M respectively．Then it is clear that N is an essential extension of L ．From the exact sequence $0 \longrightarrow M / L \longrightarrow N / L \longrightarrow N / M \longrightarrow$ 0 ，it follows that $N / L \in \mathbf{T}$ ，i．e．，L is σ－open in N ．
Conversely，assume that N is a σ－essential extension of L ．It is clear that M is an essential extension of L and N is an essential extension of M ．Since the sequences $0 \longrightarrow M / L \longrightarrow N / L$ and $N / L \longrightarrow$ $N / M \longrightarrow 0$ are exact，we have $M / L \in \mathbb{T}$ and $N / M \in \mathbb{T}$ ．
From the above lemma，we see that every non－zero submodule and every σ－essential extension of a σ－uniform module are again σ－uniform．

A module is said to be σ－complete，if it has no proper σ－essential extensions．
Proposition 2．For every module M ，there is a σ－essential extension \bar{M} of M which is σ－complete． This extension is unique up to isomorphism over $M . \bar{M}$ is called the σ－completion of M ．

Proof. We can construct an extension \bar{M} of \boldsymbol{M} by $\bar{M} / M=\boldsymbol{\sigma}(E(M) / M)$, where $\boldsymbol{E}(\boldsymbol{M})$ denotes the injective hull of M. Since $M \subset \bar{M} \subset E(M)$ and $E(M)$ is an essential extension of M, \bar{M} is an essential extension of M, and moreover, \bar{M} / M is in \mathbf{T}. This means that \bar{M} is a σ-essential extension of M.

Next, we shall show that \bar{M} is σ-complete. Let H be a σ-essential extension of \bar{M}. We may assume that H is contained in $E(M)$. Since $H / M \in \mathbf{T}$, we obtain that $H / M \subset \sigma(E(M) / M)=\bar{M} / M$, so that $\bar{M}=H$.

It remains to show that \bar{M} is unique. To this end, assume that U is any σ-essential extension of \boldsymbol{M} and is σ-complete. Since $M \subset U \subset E(M)$ and $U / M \in \mathbf{T}$, we have $U / M \subset \bar{M} / M$, i.e., $U \subset \bar{M}$. Using Lemma $1, \bar{M}$ is a σ-essential extension of U. Thus $U=\bar{M}$ because of the σ-completeness of U.

A module E is called σ-injective if for any $I \in \mathcal{L}$ and any R-homomorphism f of I to M, there is an R-homomorphism \bar{f} of R to M extending f.

Proposition 3. A module M is σ-complete if and only if M is σ-injective.
Proof. Let M be σ-injective and let M^{\prime} be a σ-essential extension of M. The sequence $0 \longrightarrow M \longrightarrow$ $M I^{\prime} \longrightarrow M^{\prime} / M \longrightarrow 0$ is exact and $M^{\prime} / M \in \mathbf{T}$. Hence there exists some module X such that $M^{\prime}=M \oplus \boldsymbol{X}$. But M^{\prime} is an essential extension of M and so we obtain $M^{\prime}=M$.

Conversely, let $I \in \mathcal{L}$ and let f be an R-homomorphism of I to M. By the injectivity of $E(M)$, there exists an R-homomorphism \bar{f} of R to $E(M)$ extending f. We put $\bar{f}(1)=x$ and show that $x \in M$. Let φ be the mapping from R to $(R x+M) / M$ defined by $\varphi(r)=r x+M$ for $r \in R$. Then ker $\varphi=$ $(M: x)$ and $R /$ ker $\varphi \cong(R x+M) / M$. For any $a \in I,((M: x): a)=i M: a x)=R \in \mathcal{L}$, since $a x$ $=\bar{f}(a)=f(a) \in M . \quad$ By the property of \mathcal{L} in $[1, \mathrm{P}, 7]$ we have $(M: x) \in \mathcal{L}$. Thus $(R x+M) / M$ $\in \mathbf{T}$, and so $\boldsymbol{R x}+M$ is a σ-essential extension of M. By assumption $M=R x+M$. Therefore $x \in M$.

Proposition 4. If M is σ-injective and $E(M)$ is σ-uniform, then M is injective.
Proof. Since M is σ-injective, $E(M) / M \in \mathbf{F}$ (see Lambek 〔1〕). On the othere hand, since $E(M)$ is σ-uniform, we have $E(M) / M \in \mathbf{T}$. Thus $E(M)=M$ as desired.
Proposition 5. Let M be a uniform module. Then M is σ-uniform if and only if, for any non-zero element m of $M, R m$ is σ-uniform.

Proof. The "only if" part is obvious. To prove the "if" part, assume that M is not σ-uniform. Then there is some non-zero submodule N of M such that M is not a σ-essential extension of N. Since M is uniform, N is not σ-open in M. There exists a proper submodule L of M such that $\sigma(M / N)=$ L / N, and $0 \neq M / N \cong(M / N) / \sigma(M / N) \in \mathbf{F}$. Take an element m in $M \backslash L$. Since $R m /(R \mathrm{~m} \cap L)$ is isomorphic to a submodule of $M / L, R m /(R m \cap L) \in \mathbf{F}$. On the other hand, M is uniform and $L \neq 0$, so we have $R m \cap L \neq 0$.

Hence $R m /(R m \cap L) \in \mathbf{T}$ by assumption. This implies that $R m /(R m \cap L) \in \mathbf{T} \cap \mathbf{F}=0$ and $R m=$ $R m \cap L$. Thus $m \in L$, a contradiction.

A left ideal I of R is called σ-critical, if R / I is σ-uniform. Thus I is σ-critical if and only if R / I is an essential extension of J / I and $R / J \in \mathbf{T}$, for all left ideals J properly containing l.

A module M is called σ-atomic if
(1) M is σ-uniform and
(2) M is σ-complete.

By the above definition, we have the following proposition.
Proposition 6. If M is σ-uniform, then \bar{M} is σ-atomic. In particular, if I is a σ-critical left ideal of R, then $\overline{(R / I)}$ is σ-atomic.

Moreover, we can prove the converse of this proposition.

Proposition 7．Let M be a σ－atomic module．Then there exists a σ－critical left ideal I of R such that M is isomorphic to $\overline{(R / I)}$ ．
Proof．For any $m(\neq 0)$ in M ，let $I=(0: m)$ ．Then R / I is isomorphic to $R m$ ．Since M is σ－uniform， $R m$ is σ－uniform．Thus，l is σ－critical．Moreover M is a σ－essential extension of $R m$ ．Hence we have $M \cong \overline{(R / I)}$.

Proposition 8．The following statements are equivalent for a non－zero module M ：
（a）M is σ－uniform．
（b） \bar{M} is σ－uniform．
（c） \bar{M} is σ－atomic．
Proof．Obvious．
Proposition 9．The following statements are equivalent for two σ－critical left ideals I and J ：
（a）I and J are related（i．e．，if $(I: a)=(J: b)$ for some $a \in R \backslash I$ and $b \in R \backslash J$ ）．
（b）A non－zero submodule of R / I is isomorphic to a submodule of R / J ．
（c）$\overline{(R / I)} \cong \overline{(R / J)}$ ．
Proof．The proof is similar to that of Storrer 〔2，Proposition 2．3〕，so we omit the proof．

Acknowledgement

The author is thankful to Professors Y．Kurata and H．Katayama for valuable advices．

References

1）J．Lambek，Torsion theories，additive semantics，and rings of quotients，Lecture Notes on Math－ ematics 177 （1971）．
2）H．Storrer，On Goldman＇s primary decomposition，Lecture Notes in Math．No．246．Springer （1972），617－661．

