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Abstract

Recently, using a concept of S-modules, Z. Papp has given some equi{/alent conditions for a left
Artinian ring to be hereditary. But, apart from this concept, we can prove the equivalence of these
conditions in the point of view of general 3-fold torsion theories. This is our purpose of this note.

§1. Introduction

An R-module M is called an S-module if every homomorphic image of its injective hull is injective.
As was pointed out by Papp, if R is left Noetherian, the class S of all S-modules forms a torsion class,
that is, S is closed under homomorphic images, direct sums and group extensions. Moreover S is stable
and hereditary in the sensc. that it is closed under injective hulls and submodules.

The class of R-modules having no S-submodule other than 0 forms the associated torsion-free class
F of S. ‘ ’

In particular, if R is left Artinian, the associated filter of left ideals of R determined by the torsion
theory (S, F) has a minimal element. Therefore S becomes a TTF-class and together with the class C
of those R-modules whose non-zero homomorphic image is not S-module, the triple (C, S, ¥) forms
a 3-fold torsion theory for R-mod. For this 3-fold torsion theory, Papp has shown that the following
six conditions are equivalent :

(a) R is a hereditary ring.

(b) R/N is an S-module.

(c) Every simple R-module is an S-module.

(@ e(R) =0.

(e) s(R) = R.

(f) All R-modules are S-modules. _

The purpose of this note is to show the above equivalences except for (a) from a point of view of

general 3-fold torsion theories.

§2. Preliminaries

Throughout this paper, R will mean a ring with identity and R-modules will mean unital left R-
modules.

Following Dickson (1], we shall make definitions : ‘

A torsion theory for R-mod, the category of left R-modules, consists of a couple (T , F) of classes of
R-modules satisfying the following axioms :
(1) TNF = {0}.
(2) If T—> A0 is exact with T& T then A< T,
(3) If 0— A— F is exact with F& F then 4 ¢ F.
(4) For each R-module M, there exists a submodule :(M) of M such that t+(M) & T and M/t(M)
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€ F.

The modules in T are torsion modules and those in F are torsion free and (M) is the unique largest
submodule of M in T.

Let T be a class of R-modules. Then T is a torsion class if there exists a class F such that (T, F)
forms a torsion theory. A torsion-free class is defined dually. A torsion class T, and the associjated
torsion theory (T, F), is called hereditary (stable) if T is closed under submodules (injective hulls).
Note that if T is hereditary, then T stable means that T is closed under essential extensions.

The following results are due to Dickson (1).

(1.1 A class T of R-modules is a torsion class if and only if T is closed under homomorphic images,
arbitrary direct sums, and extensions. Dually, a class> F is a torsion-free class if and only if F is closed
under submodules, arbitrary direct products, and extensions.

(1.2) Let (T, F) be a torsion theory. Then T and F uniquely determine each other as follows :

T={M & R-mod | Homr(M , N)= Qfor all N € F},
F={M & R-mod | Homg(N , M)=0for all N& T}.

(1.3) If (T, ) is a torsion theory, then T is hereditary if and only if F is closed under injective
hulls.

In (3), Kurata has defined an n-fold torsion theory for R-mod as follows.

For any integer n>1, an n-fold torsion theory for R-mod consists of an n-tuple

(T1, T2, ..., Tn)
of classes of R-modules such that each successive pair (T, Ti+1), for i=1,2, ..., n—1, forms a torsion
theory. Now, let (T1, Ty, Ts) be a 3-fold torsion theory. This is nothing but a TTF-theory defined
by Jans (2). This means that (T1, T2) and (Ta, Ts) are torsion theories with torsion radicals 7; and f,
respectively. '

§ 3. C is hereditary

In (4), Papp has proved that the class F contains the class C. But this is equivalent to the fact that
C is closed under submodules, that is, C is hereditary, and this is certainly true by (1.3) since S is
stable.

Proposition. F O C if and only if C is closed under submodules. ,

Proof. By s(M) and c(M) we shall denote the torsion submodules of an R-module M with respect to

(S, F) and (C, S) respectively. The “if” part was proved in Lemma 2.2 of Kurata (3). To prove
the “only if” part we need a well-known lemma : ‘

Lemma. C is closed under submodules if and only if N C M then c(N)=c(M) N N for all M, N & R-
mod.

Proof. The “if” part is clear. Clearly ¢(N) is contained in ¢(M) (1 N. Conversely, if m is an element
of ¢(M) N N, then Rm C ¢(M) and Rm C N. Since C is closed under submodules, Rm belongs to C
and hence we obtain that Rm C ¢(N). Thus m € ¢(N). This establishes the lemma.

Proof of the “only if” part of Proposition. The following proof is due to Kurata. Let M be an R-

module and N its submodule. It is clear that ¢(N) is contained in c(M) N N. Since C(EEAA%%— is in

is in C,

c(M)NN / c(M) c(M) . c(M)
S, we have that -5y © S\cean (7 N)) Cetemn O Ny 30d SINCe T ary (TN

we have by assumption that s (—czz(—;%‘%—ﬁ)') cSNF=0. Hence ¢(M) N N=c(c(M) N N). This
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means that ¢(M) NN is in C and thus ¢c(M) N NC ¢(N). This completes the proof of Proposition.

§ 4. Main theorem

We are now ready to prove the following theorem. This is our main theorem.

Theorem. Let R be a ring with identity and N its Jacobson radical. For any 3-fold torsion theory (Th,
T2, T3), we consider the following conditions :

(1) 1 (R) C N.

(2) R/N isin Ta.

(3) Every simple R-module is in T2.

(4) Every cyclic R-module is in To.

(5) Every finitely generated R-module is in Ta.

(6) t1(R):=0.

(7) t2(R)=R.

(8) To=R-mod.

9) T1=0.

(10) Every projective R-module is in Ts.

Then, (1)—(3) and (5)—(10) are equivalent, and the implications (5) — (4) — (3) are also true.
Moreover if either T; C Ts or T C T1, then (3) — (6) or (3) — (7) is true and hence all conditions
are equivalent. A

Proof. (5) — (4) — (3) are obvious and it is not hard to show that (5)—(10) are equivalent.

(1) = (2). Since R/n(R) — R/N - 0is exact and since Tz is closed under homomorphic images,
R/Nis in Ts.

(2) = (3). Every simple R-module is of the form R/I where I is a maximal left ideal of R. Since
the Jacobson radical N of R is contained in I, we can show that R/I is in T2 just like the proof of

(1) — (2) above.

(3) — (1). By Proposition 2 . 4 of Dickson (1], we have nn(R)= {I| R/IE To}, where I is a left
ideal of R. For any maximal left ideal M of R, R/Mis in To by assumption, and so #;(R) is contained
in M. Thus we have #,(R) C N.

(3) — (6). Assume that Ty C Ts, that is, T, is closed under submodules by Proposition. We shall
claim 7;(R)=0. If not, we can find an element x(==0) € #;(R). There exists a simple R-module M such
that Rx - M — (0 is exact. Since Rx € Ty, M is in T: and hence M is in Tg again by assumption.
So we have M &€ Tga N Ts= 0, a contradiction.

(3) — (7). Assume that T3 C Ti, that is, Tz is closed under homomorphic images.

This fact is proved as follows : Ts C T1 means that R=r1(R) ‘+t2(R). (see (31, P. 564.) It follows
from this #2(R) is an idempotent two-sided ideal in R and hence To={M & R-mod | ti(R) « M= 0} =
{M & R-mod | t2(R) - M=M}. So we have, by (1.2), Ta={M & R-mod | t,(R) + M= 0}, which means
that Tz is also a TTF-class. .

Now we shall return to the proof of (3) — (7). The following proof is due to Katayama. Suppose
that r2(R) = R. Then there exists a simple R-module M such that R/tz(R) > M —( is exact. Since
R/tz2(R) is in Ta, M is in Ts and hence M & T2 () Ts= 0, a contradiction. This cdmpletcs the proof
of the theorem.
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