THE NECESSARY CONDITIONS OF THE SADDLE POINT
IN THE THEORY OF DIFFERENTIAL GAME.
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Abstract

This article deals with a differential game with fixed time interval. In the the case that the
game has a saddle point, the necessary conditions, which the saddle point must satisfy, cre

Sformulated.

1. Introduction. In this article, we shall specialize the general theory of saddle point in (Ref. 1) to a
differential game with fixed time interval.

In section 2, we shall introduce a certain class of, two-person differential game, and some
definitions. In section 3, we shall introduce some assumptions for the differential system, and
assuming that the differential game has the saddle point, we shall show that the saddle point is
transformed to (Gi, Gz, A1, Az2)-saddle point obtained in (Ref. 1). In section 4, we shall formulate
the necessary conditions which the saddle point must satisfy, and give its proof.

2. Formulation of the Differential Game and Saddle Point. In this section, we shall formulate a

certain class of, two-person differential game, the so called game of degree, and its saddle point.

Let G be an open set in R” (an n-dimensional linear vector space), let U and ¥ be arbitrary (but
fixed) sets in R and RS, respectively, and let I be a bounded open time interval. Let 2. (or 2v)
be set of all functions defined on I which are measurable!), essentially bounded, whose range are
contained in U (or V), and let J be a closed time interval such that

J= (r1, zg] C I

In order to define the differential game, there must given :

(1) a continuous function f(x, u#, v, #) from GXUXVXI into R* and a real valued continuous
function g{x, u, v, #) from GXUxV xIinto Rl which are of class C' with respect 0 xEG
and measurable in (x4, v, t) for every fixed x€G,

(ii) a real valued continuous functions ai(x), i=1, - y my BI(x), j=1, - y £y (m+1=n),
and 7(x) defined on G and of class C1 with respect to x&G.

Now, we can formulate the differential game.

Player P 1 wants to take his strategy #(f) 2. such that u(¢) and x(¢) satisfy
_dx

dt
ai(x(r2))<0, P= 1, eeeeeees , m, 2. 2)

':f(x’ u, v, t)y x(fl):cﬂv 1Sy | ’ (2 * l)

minimize the payoff function P(u, v) defined by

P(u, v)=71(x(r2))+ Sg(x, u, v, t)dt, (2+3)

and player P2 wants to take his strategy v(r)< £, such that v(¢) and x(r) satisfy (2 + 1) and

1) In this paper, measurability is to be understood in the following sence : a function is measurable if
the preimage of every Borel set is a Borel set.
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2 Yorge Nagahisa

BI(x(z2))=0, J= 1, weeeees s £ (2+4)
maximize the payoff function P(u, v) defined by (2 « 3), where co€G is the initial state of the
game.

In this paper, let us use the words “optimal strategy” and “saddle point” as following sence.

Definition. 2 1. (1) The strategy i € Du is the optimal strategy of player P 1, if i satisfies (2« 1)
and (2 « 2) forany v € 2v, and satisfies the relation

max. P(a, v)=min. max. P(u, v), (2+5)
VE 2y Uuc 2y v Lo

(2) The strategy V € 2o is the optimal strategy of player P2, if v satisfies (2 + 1) and (2 + 4) for
any u< Qu, and satisfies the relation

min. P(u, v)=max. min. P(u, v). (2+6)
uc 2y VE 2o U< Qu

Definition. 2+ 9. If the optimal strategies i cnd v of both players satisfy the relation
P(@, v) < P(a, v) < P(u, v), for every us Qu, vy,
then the pair of strategies (4, V) is called the saddle point of the game, and the trajectory % )

corresponding to (d, V) is called optimal trajectory.

3. Assumptions for the Differential System and Preliminary Results.
In this section, in order to obtain a meaningful necessary conditions for the saddle point, we shall
introduce some assumptions for the differential system. And we shall transform the differential game

into a game in a real Banach spase.

Assumption. For every functions u(t)C 2. and v(t)E 2y, and every compact set X of G, there exist

functions m1(t) and ma(t), integrable over I and possibly depending on u(t), v(z) and X, such that

e u@), v, | S @), | 2100 MO 0D <y,

0g(x, u(®), v(1), t);i <

Bx m2(t)7

| g, w(t), v(), D | <ms (£, \

forevery x & Xandt € 1.
Here, vertical bars denote any vector norm in a finite dimensional linear vector space.
Let x0(#), r1 be the function of 7 satisfied the differential equation

_‘{’E;t(izg(x(t), w(), v(0), B, x0(c2)=0, teL (3 1)

If x0() and x(¢) satisfy the differential equations (3 » 1) and (2 - 1), respectively, then the » +1
dimensional vector valued funection

=) e

satisfies the differential equation

"zg’ C=F(z(®), u(t), v, £, z(r)=z0, tE 1, (3 2)

where,

Fe, uo. v 0=(550 U B B w=(a)-

By assumption, the following lemma evidently holds.
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Lemma. 3.1 For every functions u(t)& 2uand v()S 2v,. and every compact set Z of R1XG, there
exists a function m(t), integrable over I and posszbl) dependmg on u(t), v(t), and Z, such that

| FGz, u(n), v(@®), 0| =m@, | 2F& 2@ vD. D | 2y,

0z )
for every z €Z and t € I , ,
Let (), i=1, «ooeeveees » mand {/(z), j=1, - ‘-, ¢ be a functions defined by

§i(z) =al(x), =1, eeeeeeen , m, . :

¢i(z) =87(x), F= 1, e .2
for every z=!(e, x)E R1XG.? Then £i(z), i=1, -eeer , mand CI@D), j=1, e . ¢ are real
valued functions defined on R1xG and of class C1 with respect to z € R1XG. Let

¢(2)=71(x)+x° for every z=t(x°, x) € R1XG.

Let & denotes the space of af all n+ 1 dimensicnal vector valued continuous functions defined on J

with sup. norm topology, i. e.,
Nzl =sup. | z(t) | =max. | z(t) | .
teJd. teJ

Then the space 27is a real Banach space. Let Z/1=R™*land Z/:=R’+l, with ordinary Fuclidian
norm. Let C) and C: be the subsets defined by

Ci={e=!(e0, el, - , emy; el =<<Q, i=0, 1, - , m},

Co={e=1(e0, el, - , €05 €920, e/ <0, j=1, e , 4},

then the ses Ci and C2 are closed convex cones in 271 and %/, such that {C19} = C; and
{C29}=C3.®

Now, let us assume that the differential game given in secton 2 has the saddle point
@@, v(1)) €Qux2v, and the (), t € J, is the trajectry corresponding to (a(t), ¥(r)), i. e., the
x(t), t € J, is the optimal trajectory, and let x0(z), t+EJ, te the solution of (3 « 1) corresponding to
@), v(®). Let z(1)=t(x0(), %)), 1€J, then z(¢), tEJ, is a solution of (3 . 2) correspoading to
@@, v@).

Let 41 and A2 be the subsets in  <"defined by

m={ze 25 D —Few, wo, 30, 0, 1€ 2, =20, 1€ I},

ar={z€ % s LD =Few, a0, w0, 0, vE 20, 2=z, 1€ J,
respectively, and let Gy and G2 be the functions from Z’into Z/1and 2., defined by
/<0(z(r:z)) ¢(z(r2))

§1(z(r2))
G1(z) = : )

fm(Z(Tz)) )

9(2(r2)) — o (Z(r2))
¢Hz(2) |
GQ(Z) = : [
C‘(Z(f2)) J ,
respectively. Since 4(r) € 2+ and ¥(t) € ¥y, 7 E 4; and z € Ag, i. e,

ZE A1NAq. 13 .3)

2) The symbol ‘(+) means the transposed matrix of the matrix (- ).
3) The symbol S° means the interior of the set S.
The symbol § means the closure of the set S.
FIMLHEGEMB s 5518%F W 4 49 45 3 /4



4 Yorge Nagahisa

Since a(t), v(¢) are the optimal strategies of player P1and P2, respectively, so
Ei(f(fz))gﬂg I=1, coverree , m,
CI(E(ra))=0, j=1, «coeemr » &
¢(Z(r2)) —e(z(r2))=0.

By virtue of the definitions of Gi1, G2, Ci and Coe,

G1(z) € C1 and G2(Z) € Cs. " ' (3-4)
Let z1 € 41 and z1E€ 4,2, By the definitions of optimal strategies,
§i(z2(r2))<0, i=1, wwoeveene » My, ¢(22(r2))—¢(Z(r2))< 0,
$(z1(r2))=0, j=1, woveer s & e(Z1(r2)) —e(z(r2))=0.
It follows that
G1(za)EC1 and Ga2(z1) € Ca.
Therefore, _
G1(z2)ECh, for every 22 € Ag, (3-5)
Gz2(21)EC,, for every 71 € 41. (3-6)

Suppose that there exists a z” € A4; such that G(z’) € C1° Then
§i(Z(r2))<<Oy i=1, - , mand ¢(2'(c2))<<e(Z(r2)).

Therefore, the z'(f)=!(x'°(), x'(t)), t € J, satisfies that

d);'t(’),_:f(x'(t), u’(t), ;(t)’ t)’ tc J’ = 2u,
al(x'(r2))<<0, i=1, - . m,

and
P(u', v)<<P(a, v),

where,

T2

P, M) =7(x'(z2))+ Sg(x'(t), w(t), v(t), t)dr.

71

This contradicts the fact that a(f) € 2. is the optimal strategy of player P1. Therefore,

125 G1(DECLY, zEA1} =99 (3-7)
Similarly, ‘
{25 G2(2)€CO, z&A2}=6. (3+8)

Since %/31 and %/ 2 are real Banach spaces, by (3 - 3) — (3 - 8), and Ref. 1, Definition 3; the
ZE 27 is the (G1, G2, A1, Az)-saddle point. That is, the following lemma holds.
Lemma. 3«2 If the differential game introduced in section 2 has the saddle point (ii(t), v(t))E QuX&v,

and if a 7(t), t € J is the solution of the differential equation (3 - 2) corresponding to i(t) and v(t),
then 7 is the (G1, G2, A1, Aa)-saddle peoint introduced in Ref. 1.

For z(t)=(20(t), z1(8), --+-ev- , 2 (@) € %, let
, :(6“’(?)23"’)), aw(ggig)z, ............ , 040(622(;2))), (3+9)
SR IO ME L) E— REECICO)) P (3 10)
¢ =( ac:‘(gggz)) ’ ac:‘(ggz)) L s 09(;2#))), J=1, e - (3 - 11)

4) The symbol ¢ means the empty set.
Res, Rep. of Ube Tech, Coll., No.18. March, 1974
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and let
Pz ) @z
g, 5} , g2, C} . (3 +12)
. &7 ¢

Then, the following lemma holds.

Lemma. 3 -3 At the point 2 € &/, the following relations are satisfied ;

G1(Z+ey)—Gi1(2)

&

> &, foreveryz € %7,
e—>0
y—=z

G2(z+ey)—G2(2)
&

gz for every z € 77,
e—>0
y—z

and the functions g, and g2, are linear continuous functons from < into 7/ and “2/2 respectively.
/ 1 ,

Proof. Since the functions §t, i=1, ----eer , m, and ¢ are of class C1, the following relation is
satisfied ;

Gl(z+ey)—G1(i)=**~—861(§Z(r2)) ey+o(ey), for every ¢>0, y& &
where o(ey)/e —> 0 as ¢— 0 uniformly. Since ¢(z(rz2)) is constant,

0G1(2(x2))
0z

Therefore

=81,

Gl(Z+ay)e—G1(Z) =g1—z~(y)+—o——(say) for every >0, y& %~

Then
Gl(z+€}2—Gl(Z) > &i,(2), forevery z€ &
e—>0 ' .
y—z
Similarly,
Ga(z+ey)—Ga(2) g:-(z), for every z € %
¢ ¢—>0 ? .
¥z

It is obvious that g,; and g»; are linear continuous functions from % into ;7/‘/1 and 2/2 respectively,
b

because gi; and gz, are (m+ 1)X(n+ 1) and ({+ 1) X(n+ 1) matricies, respectively. (Q. E. D.)
Let Hi and H: be the sets defined by
Hy={F(z, u(®), v(@), t); u()E Ly, t € I},
Ho={F(z, a(t), v(t), ) ;v()ERy, tE I}.
By Gamkrelize, Hi and H2 are quasiconvex (Ref. 2).

Let us consider the following linear variational equation of (3 « 2) along the solution z(#) ;

do() _ OFG@®, a®, (1. D g7y () 4 sF1GQ), a(®), 5, D, 1€ I,

dt 0z
0F1 € (Hi) —F, dz1(r1)=0€E R+, (3 +13)
d5z;t(’) — 0FGz(®), '7<6’2’ V0 D 40ty +8F2G®), a(D), v, 1), tE I
0F2 € [(Ho] —F, 0z2(r1)= 0 € R"+], (3 +14)

FWIESTHMRUEHE H18T MR 4943 J



6 . : Yorge Nagahisa

where [Hi) and [H:] are convex hull of the families H; and H2, respectively, and
F=F&@®, a(), v(), t). Let 6(t) be a nonsingular matrix function that satisfies the equation ;

do(e) _ 0F(z(n), a(®), v(1), ‘ - .15
g oz @), 0(r1) =E, (315

where E is the (n+ 1) X(n+ 1) identity matrix, then the solutions of (3 «13) and (3 « 14) are given
by

t

6Z1(t)=¢(t)S@‘l(s)6F1(Z(s), acs), (s), s)ds,

71

t
az2(:):m(t>gm-l(s)apg('zu), a(s), v(s), s)ds.

71

Let K1 and K= be the subsets in % defined by

4

Ki={0z1 € 2 ;021)=0@) x 0-1(s)0F1(z(s), a(s), F(s), sds, 6Fhc (H]) —F, t&J},

71

t - -
Ko={0z2 € 2 ;0z2()=D (&) 5 0-1(s) 0 F2(z(s), a(s), v(s), s)ds, O6Fs& (Ha) —F, t&J}.

71

Then the following lemma holds.

-Lemma. 3+ 4 The subsets K1 and Kz be convex sets such that
0 EKICLC(A]., 2) and 0 EK2CLC(A2y 2)1 .
where LC(Ai, 7), i=1,2, mean the local cones of Ai, i=1,2, at z defined by Ref. 1, Definition 2.

Proof. Since F & H,, it follows that 0 € (Hi) —F. Therefore, 0 < K;. Because of convexity of the
set [H1] —F, it is obvious that K is convex set. Let 6z1E£K1, i. e.,
7
azl(z)=a;(t)Sw—l(swpl(z(s), a(s), v(s), sHds, € J,
71
where 0F1(Z(¢), a(t), v(1), ) € (Hi]) —F. Since Hi is quasiconvex, there exists, for every
e€(0, 1), a function ke(z, t) from R1xGxI to R*+1, in class C1 with respect to z, and depending
on 0F1 and ¢, such that .
(F+edFi+ke) € Hh (3 +16)
(see Ref. 2, pp. 111). Now let us consider the perturbed equation

d_f;t') =F(z(0), (), %D, D+e8Fi((®), @), ¥(), D+ke (z(®), 1. ‘ (341D

It is not difficult to show that, if &> 0 is sufficiently small, then the solution z(#) of (3 -.17),
satisfying the initial condition z(r1)=2z(r1), exists for r1i=< 1< r2, and has the form

z(t) =z(D) +edz1(2) +o(e), nst=ts. - : . , (3 +18)
where o(¢)/e—>0 as e—> 0 uniformly in ¢, 1=t <rs. By virtue of (3 -16), z(t) € 41.
Therefore,

m

z—>72 —l—(z~—2) —> 0z1 as

Res. Rep. oo Ube Tech, Coll., No,18, March, 1974
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By Varaiya (Ref. 3),
0z1€ LC(41, 2).
Therefore, K1 is convex set such that
0c K1CLC(A1, 2).
Similarly, we can show that K2 is convex set such that
0EK2CLC(A2, 2). (Q. E. D))
By the Lemma. 3 + 2, 3+ 3, 3+ 4, and Ref. 1, Theorem, the following lemma holds.

Lemma. 3-5. There exist y1* € Z/% and y*c fZ/{Z*, not both zero, such thatd
1

Y1*(81;(21)) +y2* (82;(21))= 0 for every anek, (319
1%(g1;(z2)) +y2* (82;(22)) = 0 for every 22 € Ko, (3 +20)
n*(Gi1(@))=0, (3 +21)
y2*(G2(2)) =0, (322
»n*1)<0 for every y1€Ci, (3-23)
y2*(y2)=0 for every y2ECa. (3 -29

4. Necessary conditions for the Saddle Point. In this section, we shall formulate the the nacessary
conditions and give its proof by use of the results obtained in section 3.

Theorem. Let (i(#), v(£))E Qu X2y be the saddle point of the differential game formulated in section
2, and let 7(t), t1=t<vq, be the solution of (3 « 2) corresponding to @(t), v(t). Then there eXists an

absolutely continuous vector valued function v (t), ©1<t<ceo, and Hamiltionian functian H(\,z,u,v,t), such

that (1), ¥(), 11 t<rt2, satisfy the following Hamiltonian system of equations for g_lmost all t, c1=iea
dz(D) _ OHMW, 20 80, ¥D: O _pian i), 30, 0,

dt FL (4-1)
dy(@) _ _ 0HM@®), z(@), a(®), v(t), &y _ OF (M), a®), v, b
a 9z =—vy() 72 ) (4-+2)

and such that the inequalities
Hy®, z(0), a@®, v, HSHM@®, z(, a@®), v@), HSHX@®), z(®), u, v, 1), (4 +3)
hold for every uc U and vEV. Further, ¥ (1), t1<t<rto, satisfies the terminal condition :

m Y .
V(ea)=be, + v & +3 ¢, (4+4)
i= =
where vi, i=1, - y o my, pd, j=1, e , { and 0 are real numbers and 5;, i=1, , m, C'; ,
J=1, - . { and ¢, are partial derivatives of £, i=1, - , omy, CT, =1, e ! and ¢ at the

point 7(r2).

Proof. Since spaces 3?/1 and 9/2 are Rm+1and R/+1, respectively, 2/ = 2/*=Rm+land
1 1
We= Z/2*=R!+1, Therefore, by (3 +12), (3 +19) and (3 -20),

m . ¢ .
00+ 4%, (z)+ 2 v? 5;(21) + 3 ud Ci—(n)%o for every z1 € Kj, (4 +5)
i=1 J=1
m . ‘ .
O+ u0e- (z2)+ 33 vt 52(22) + 3w cg(z;»)go for every zo € Ko, (4 +6)
. i=1 i=1

5) The symbol %/ % represents the conjugate space of 2/

FHRIXATHMSLRPRE BI85 I f1 49 42 3 j



8 Yorge Nagahisa

where y1¥=t(v0, v, weoreer , YWYERM+1L, po¥=t(pu0, g1, cevrennn , n)ERI+L,
By the definitions K1 and Ks,
o
70(c2) | 0-L(DIFLE(S), @(s), ¥(s), $)ds=0 (4+7)
71
for every 6F1< (Hi) —F, and

T2

70 (c2) | 0-1()F2(2(), (), ¥(s), Hds=0 (4 +8)
71
for every 6Fe € (Hs) —F, where = is the n+ 1 dimensional vector :
m l
r=(0+u0)e. + 3 viE +3ui C] .

=1 J=1
Now let us defined the function v(t) as follows :
PO =r0(c2)071(D),  tEJ. (4+9)

By (4 +7), (4-8), (3+15 and (4 +9), the function ¥(z) satisfies the following relations @
(vsneo, ao, v, ndizo (4 - 10)
for evefy 0F1 € (H] —F,

S*/'(t)ﬁFQ(Z(f), a(t). v(1), D=0 (4 - 11

for every 0 Fe€ (H2) —F,

—fl-‘flgi:—«ﬁ(tj\ OF (1), ﬁg?’ v, D for almost all ¢t & J, (4 +12)

Y(re) =m. (4 +13)
Now, let H(¥ (), z(£), @(®), v(®), 8, tE€ J, be the Hamiltonian function defined by

HO @), z(@), @), v(@), D=v(OF@®), a(), v(®), ). (4 - 14

Since z(?), t&J, is the solution of (3 + 2) corresponding to @(f) and ¥(#), and v(9, t€J, is the
solution of (4 - 12), the relations (4 + 1) and (4 - 2) are satisfied on J. Let o be the real number
such that p=v0+ 0, then v () satisfies the relation (4 +4) at t=r2.

From (4 +10), (4 -11) and from the definitions of Hy and Ho,

S“/’(f)F(E(t), u(t), v, Ddt= be(t)F(E(t), a(t), v(t), vdr, (4 -15)
| v F@®, a0, ¥©, ddi= [voFe®, a©, vo, nar, (4 - 16)

71 72
for every u(t) € 2. and v(¢) € 2o . The function F(z, u, v, t) is continuous with respect to u, v, and
t. By Gamkrelize, the relations (4 - 15) and (4 - 16) mean that

YO FE®), u, 7)), DZVOFE®, a@®, v®), D2YOFE®, @), v D,

for almost all ¢ € J. these follow that the relations . (4 « 3) hold. This completes the proof of the
(Q. E. D.)

theorem.

FHTEGTEMREIIERE #1188 W49 43 7
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