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Abstract

This article is devoted to the formulation of a general saddle point of a game and to the derivation
of necessary conditions which the saddle point must satisfy. The necessary conditions include the theory

of various games and differential games.

1. Introduction. The study of game theory has been initiated by John von Neumann and Osker
Morgenstern (Ref. 1). Then, the game theory has been developed by mathematicians and economists.
In 1954, Isaacs applied the game theory to differential systems, and this is the differential game (Ref,
2). After that, useful works in the branch of the differential game have been achieved by L. S.
Pontryagin, L. D. Berkovitz and others (Ref. 3—6).

This paper is devoted to a general theory of games which includes a variety of theory of games and
differential games. That is, in the case that a game or a differential game has saddle point, a (G,
Gz, A1, As) -saddle point which is abstraction of the saddle point in a game and a differential game
is defined, and its necessary conditions is presented. The necessary conditions will be applied to various
games and differential games.

In section 2, some definitions of terminology and preliminary results are present. In section 3, the
abstract saddle point is defined, and the necessary conditions which is satisfied by the saddle point is

proved.

2, Preliminary Results. In this section, we shall introduce some definitions and derive lemmas which
will be used for the proof of the main theorem in the following section.

Let 7”7 and 7/ be real Banach spaces, let 4 be a nonempty subset of 77, and let £ € A.

Definition 1. By the closed cone of 4 at ¥, we mean the intersection of all closed cone 1 containing
the set

A-%={a-%:ac A}.
We denote this set by C( 4, ).

Definition 2. By the local closed cone of 4 at %, we mean the set

NZUW)

where U(x) is the class of all neiborhoods of x.

By Varaiya, the following lemma holds (Ref. 7).

Lemma 1. let z 0. The element z € LC( 4, x) if, and only if, there exist
{xn:anA, n=1, 2, eserreee- } and {in:1n>0, n=1, 2, }, such that
tn—>%, An(xn—X) —> z as n—> oo,

Let C be a nonempty closed convex cone in 7/ such that {C0} = C 2. Then the following lemma

1 A set Cis a cone if, and only if, ¢ C C C for all ¢ = 0.
2 The symbol S° means the interior of the set S.

The symbol S means the closure of the set S.
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holds (Ref. 8).

Lemma 2. If y1 € CO and ys € C, then y1 + y2 & CO.

Now, let us consider a mapping G from 7 into %7 . We assume that G is continuous and that,

s

for every z € .77, there exists a linear continuous mapping g: from 7~ into 7/ such that

G(z+¢ey)—G(z)

o &:(x) for every x€ 77 6))

y —> X
Lemma 3. Let x€ 4 and G(x) € C. Then
(x:G(x)ECO xC A}y =¢ 2 implies LC(A, &) N g3 (CO —G(Z)) = ¢.
Proof. Let x € LC(A4,%£)Ngz!(C0—G(Xx)). If x=0, g;(0) € C° — G(%), that is, G(x%) € C°. Since
TEA TE{x:G(x)ECo, x€ A}.
Therefore, if x =0, this lemma folds.

We assume that x + 0. Since x € LC( A, &), by Lemma 1, there exist {xn: xn € A, m=1, 2, = }
and {n: 2, >0, n=1, 2, = }
such that

Xn —> X, &n(Xn—%) —> x as n ——‘>. co,
Since 1/4» —> 0 as n —> co, it follows from (1) that
An n—X
G+ 2 =9) _ G
in ~ s g;(x),

that- is,
(G xn)=G(X)) ——— gz(x). @)

n— 00
On the other hand, x € g5'( CO—G(%)). It follows that
g:(x) € CO - G(%). ' ®
Since C¢ — G( &) is open set, from (2) and (3), there exists a positive number N such that
n> N implies An(G(xn)— G(x)) € C° —~ G(x),
that is, ‘ ' '
n> N implies Ax( G(xn)— (An—1) G(X)) € CO. 4)
There is a positive number ]!{ such that n> M implies 1, > 1, because in —> oo as n—> ©O. Since
Cis a cone and G(x) € C,
n> M implies (in—1) G(x) & C. , (5)
The;efore, from (4), (5) and Lemma 2, it follows that
n>max {N, M} implies G(xn) € CO.
Since x» € A4,
n>max {N, M} implies x, € {x:G(x) € C° x& 4},
and -this contradicts the fact {x: G(x) €C° xE A} =¢. (Q. E. D.)

3. The Concept of Abstract Saddle Point and Game Theory. In this section, We shall introduce the
concept of abstract saddle point, and present necessary conditions which the saddle point must satisfy.

In this section, let //1, //,‘, and .7 be real Banach spaces. In order to define (G1, Gz, 41, A2)

-saddle point, there must given :

3 The symbol ¢ denote the empty set,
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(i) closed convex cones Cy C 7/1 and C2 C ?/2 such that {C1°} =C1 {C} = Ca,
(ii) arbitrary subsets 4; and A2 in 2

(iii) continuous funetions G1 from <~ into 7’y and Gz from “Z into 7/,

Definition 3. x € -7 be called a (G1, G2, A1, A2) -saddle point if

® xC A1 Ag,

@ Gi1(x) € €1 and G2(¥) € Cq,

® Gi(x2) € Cy for every x2 € A2 and Gz2(x1) € C2 for every x1 € A1,

@ {x;G1(x)eC’, xEA=¢and {x:G2(x) ECy°, xS Az} = ¢.

In order to obtain a meaningful necessary conditions for the saddle point, the following is satisfied by
the functions Gi1, G2, the subsets Ai, Az, cones Cy, C2, and the (Gi1, G2, A1, Az )-saddle point.

Condition. At the point x e f//w, there exist linear continuous functions gi; from 2 into //I and
g23 from <7 into 74 such that

Gi1(x+ey) — Gi(x)

: — g1;(x) for every x & .77, )
y—>x

G_g(x+5y€)— Ga(x) pp— LT (x) for every x € 77. (7)
y—>x

Now, we shall present necessary conditions which the ( Gy, ‘Gz, A1, Ag2)-saddle point must satisfy,
and give the proof.
Theorem. Let§€ ' be a_(Gl, Gz, A1, Az2)-saddle point such that at the point ./v\, the Condition
given in this section is satisfied, and let K1 andKo be arbitrary convex sets such that
0€ K1 C LC(A1, x) and 0€ K2 C LC{ds, X).
Then there exist y] € ?/I and yZ € 75 not bothzero, such that 4

y; (€13 (x1))+Y, (gz_%(xl D=0 for every x1 € K1, ®
¥ (&35 (x2))+¥, (822 (x2)) =0  for every x; € Ko, ©)
¥ (G1(x) =0, ”
¥, (G2(x)) =0, 0
V() =0 for every y1 € Ci, )
¥, (y2) =0 for every yz € Ce. 13

Proof. For each x1 € K3, define a subset Bi(x1) of %, by
Bi(x1) = {y:g12(x1)+G1(x)—y€E C1},

let
Br= U Bi(x1).

x1~=K1
Since K1 is convex, Bi is a convex subset of Y. Also, since 0 € K3 and G1(3c\) & Cy, it is obvious
that 0 € B1 Suppose that B1 N C,° + ¢, that is, there is an element yo& By M C1°, then there exists a
Zo € K1 such that

% =
4 The symbol 2  represents the conjugete space of 2
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£15(20)+G(x)~yo € Ca.
This means that
20 €81} (CY—G1(x)).
On the otHer hand, zo € K1 CLC( Ay, x). Therefore, by Lemma 3, it follows that
{x:G1(x) € CO% xC A1} + ¢, .

and this contradicts that x is (G1, Gg, A1, Az)-saddle point. Hence
ByNCo =4, . {14
It is obvious from {14 that C(B1, 0) # y1. Since By is convex, C(Bi, 0) is also convex. Therefore,

there exists a nonzero, continuous linear functional yI € 7’?/1* tangent to C( By, 0) at origine, (Ref. 9,
p. 425) namely,

n»M=o for every y € Bi. 15
From the definition of By, it is obvious that y € B; for every y & — Ci. It follows from (15 that

=0 for every y € Ci. 8

It is obvious that G, (x) € By, so, from (5 we obtain that y;( G1(x)) = 0, while, y1( G (X)) < 0 because

Gy ()?) € C1. Thus we obtain that
¥ (G (x)) = 0. 7
Since g1 (x1) + G1(x) € By for every x1.€ K1, it follows from {5 that
N (€13 (x1) +G1(0)) =0 for every x1 € K1 48
From (17 and (18, it follows that
y; (g15(x1)) =0 for every x1 € K1. ‘ 19

Similary, if we define the set B2 by
B2 = U B2(x2)7

r2E Kg

where
Ba(x2) ={y:g25(x2) +G2(x)—y € C2, x2€ Kz},

we obtain that

¥, N =0 for every y € B,

that is,
V() =0 for every y € Ca, 20)
Y, (Ga2(x)) = 0, _ e
¥, (825 (x2)) =0 for every x2€ Ka. 2

Let xo € Ko and xo #+ 0. Since Kg C LC(Aq, Ax), by Lemma 1, there are {xn: xn € A2, n=1, 2,
......... Yand {An:dn>0, n=1, 2, --eoer}
such that
Xn—>%, An(Xn—%x) —> X2 as n—> oo,

By Definiton 3, ® and (6, it follows that

71 (G1(xz) <0, n=1, 2, seweeee .
From a7 and xn =x + (1/2n) (An(xn—2%)), n =1, 2, -wereer- ,
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¥ GG+ (nen=2 )~ ¥ (G1 (D)

= <0, n=1, 2, eeeeeee )
From (6), this means that
i (812 (x2)) <0.
From the fact that y] (g1 (0)) =0,
x2 € Ko implies y; (817 (x2)) <0. @
Similary,
x1 € K1 implies y; (g25(x1)) 2 0. , o4
From (19 and @4, it follows that
Y1 (81;(x1)) +y; (g22 (x1)) = 0 for every x1 € Kj, )
and from @9 and ©3, it follows that
»1 (g17(x2)) +y§ (825(x2)) =<0  for every xz € Ka. @6

Fromes), @9, (17, @, 6and {20, this theorem holds. (Q. E. D.)

4. Concluding Remarks. In the case that a game or a differential game has the saddle point, the
theorem shown in Section 3 give the necessary conditions which is satisfied by the saddle point. The
theorem is applied to not only a game in a finite demensional space or a multistage game, but also a
game in a function space or differential game, because the theorem is discussed in a Banach space.

In case of applying this theorem to a game, the subsets 41, and A2 are sets of strategies of each
player, and the G1 and G2 are a payoff function and constraint conditions of the game. In case of
applying it to a multistage game or differential game, the subsets 43 and Ao are subsets retaled to
strategies of each player, and the G; and G2 are terminal conditions and constraint conditions of the
game,
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