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0. Introduction. The aim of the present short paper is to introduce
a new algebraic system, named pre-arithmetical lattice-ordered commu-
tative semigroup (abbr. pal-semigroup), in which the arithmetic in the
sense of Artin can be discussed, and to determine the relationship be-
tween the system and the lattice-theoretical divisors investigated in [8].

1. Pal-Semigroups. Let S= (S, *, <) be a conditionally complete
(upper and lower) lattice-odered semigroup with unity quantity e, G =
(G, ) the unit group of (S, *), I the integral part (cone) of (S, <) and
H the intersection of G and I.

Definition 1. S is called a pre-arithmetical lattice-ordered semi-
group (pal-semigroup), if it satisfies the following conditions :

(a) (S, *) is a quotient semi-group of 1 by H, i. e., each element of S
is expressed as cx™ with c in I and x in H.

(b) H is a join generator system of I, i. e., each element a of I is
written as a = sup(E), where E is a finite or infinite subset of H.

For each element a of S we put
Ula)={ueG;u=a}, La)={uEGqG;u<al

Then these two subsets of G are non-void, which are assured by the con-
ditions (a) and (b) respectively. Now it can be shown that for each
element a of S there exists a subset A of G such that @ = sup(4), so
that we have

a = sup L(a).

But a = inf U(a) is not true in general. Here we consider a map
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d: S—>8; al—d(a)=inf Ua).

Then we have (1) a < d(a), (2) a < d(b) implies d(a) < d(b), (8) d(d
(a)) =d(a), and (4) if A is a non-void bounded (lower) subset of G,
then d(inf (A)) = inf (A).

Definition 2. An element a of S is said to be divisorial if d(a) = a.

We put G(a/b) = {u € G; ub < a}, and S(a/b) = {cES; cb < a}.
Then it can be proved that

sup G(a/b) = sup S(a/b).

We denote it by a/b for simplicity. Thus we can see easily that if a is
divisorial, then so is a/b for an arbitrary element b of S. Moreover we
obtain d(a) = e/(e/a) for every a in S, and

d(ab) = d(d(a)d(b)).

In the following d(T) will denote the set {d(t); t € T} for a non-void
subset T of S.

Theorem 1. The set d(S) of all divisorial elements in S forms a pal-
semigroup under the binary operation “o” defined by d(a) o d(b) =d(d
(a) d(b)) and the same ordering in S. '

Proof. It is easy to show that (d(S), <) forms a lattice under d(a)
v d(b) = d(d(a) vV d(b)) and d(a) A d(b) = d(a) Ad(b) = d(d(a) Nd
(b)), where \/ and A are the join and the meet in (S, <) respectively.
If d(T) is a bounded subset (upper) of d(S), then we have that d(sup d
(T)) exists, and d(a) o d(sup d(T)) = d(d(a) d(sup d(T))) = d(a * sup
T) = d(sup(aT)) = d(sup(d(a) d(T)) = d(sup(d(a) o d(T))). Hence “o”
distributes for the join operation o-sup, which is defined by o-sup d(T)
: = d(sup d(T)). Evidently, if d(T) has a lower bound, then d(T) =d
(inf d(T)) exists, and it is readily verified that the unit group of (d(S),
o) contains (G, *) and (d(S), o) forms a quotient semigroup of d(I) by
d(H) = H. Moreover if a = d(a) is in d(I), then we obtain @ = d(sup
E)) = o-sup(d(E)) for a subset E of H.
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2. Artinian Lattice-Ordered Semigroups.

Definition 3. A pal-semigroup S = (S, ¢, <) is said to be Artinian,
if and only if (d(S), o) forms a group.

Then if S is Artinian, (d(S), o, £) is a lattice-ordered group and
the lattice d(S) satisfies the strong distributive law. Let S be a pal-

semigroup.

Definition 4 [8]. The unity quantity e is said to be integrally
closed, if whenever v < ¢ for uz in G and for all n in N, the positive inte-
gers, then u < e.

This definition is a generalization of the completely integral closed-
ness defined in [2], [3] and [8].

Theorem 2. A pal-semigroup is Artinian if and only if its unity
quantity is intagrally closed.

Proof. Let S be an Artinian lattice ordered-semigroup. If {u*; n
€ N} has an upper bound, there exists an element x in G such that u* <
x for allnin N. Evidently {u™; n € N} is bounded (lower) — x' is
a lower bound —. Hence there is inf.{u"} = : ¢. Since {u"} is con-
tained in G we have d(¢) = ¢ by the above property (4) of “d”, and we
have '

cou ' = d((inf.e: u™u" = d(infass u™) = d(infus: u™) = ¢,

- 1 1

ul'=clocou'2cloc=ce.

Therefore we have e > u. Conversely, suppose that e is integrally closed.
Let a be an arbitrary element of d(I), and u an element of G such that
u+ale/a) <e. Then we have ua < e/(e/a) = d(a) = a, a L u™a for all
positive integer n. Hence we get y < u™a, u" < ay™* for any y in L(a).
This implies u < e, ¢ < v}, and implies e < U(a(e/a)). On the other
hand, since a(e/a) <e, we have e EU(a(e/a)). This yields the
following equalities :

ao(e/a) = d(ale/a)) = inf Ulale/a)) = e.

For any d(a), there exists an element z in H such that a oz < e. By the
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above equality a oz is invertible, so we proved that a is invertible.
Q. E. D.

Definition 5. An element a of S is said to be finitely attainable, if
whenever @ = sup () for a subset E of G, then there exists a finite
number of elements xi, ***, x. in E such that a = x:\/ *** \V/ xx.

Definition 6. An element a is said to be d-accessible, if whenever d
(sup (©)) = a for the ascending chain C = {¢ Ed(I) ; & < ¢: < -}, then
sup C = a.

Theorem 3. Let S be an Artinian semigroup. Then a. c. c. (as-
cending chain condition) holds for the elements in d(I), if and only if
unity quantity of S is finitely attainable, and at the same time it is d-
accessible.

Proof. We note that sup X = sup (U {L(a); a € X}) is valid for
an arbitrary non-void subset X of I, where U denotes set-theoretic union.
Now suppose a. c. c. holds for elements in d(I). If d(sup(C)) = e for
an ascending chain Cin d(I), there exists an element c¢. in C such that c.
=e. This implies e < sup (C) < e, and sup (C) =e. It is clear that e
is finitely attainable. Conversely, let a» < a. < ---be any ascending

chain in d(I), and a™* the inverse of a = d(sup {a.}) with respect to “o”.
Then we have the following equalities :

e=aoa = d((sup {a.}) a™*) = d(sup {a.a™*})
= d(sup (U L ({a.0a™}).

Since the set U L(a. 0a™') is contained in H, there exists a finite
number of x: € L(a.0a™) for suitable n with e = x:\V *=* \V x-. Then we
have e < sup L{a.0oa™)
all positive integer k. Q. E. D.

An element p in [ is said to be prime, if ab < p impliesa < por b <
p, where a, b are elements in . An element p in d(I) is said to be (o)~
prime, if ¢ o b < p implies ¢ < p or b < p for elements a, b in d(I).
Then evidently an element p in d(I) is (o) -prime, if and only if it is
prime.

If S is Artinian, (d(S), <) forms a distributive lattice, so that we
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obtain an abstract refinement theorem for elements of d(I). The proof
is quite analogous to Artin’s refinement theorem for integral ideals in
integral domains [3] or to Theorem 2. 4 in[1]. Consequently we obtain
the following :

Theorem 4. Let S be an Artinian semigroup. If a. c¢. c¢. holds for
the elements in d(I), (d(S), o) is a restricted direct product of infinite
eyclic groups, each of which is generated by the prime elements in d(I).
In particular, each element in d(I) is uniquely factored, apart from com-
mutativity, into a finite (o)-product of prime elements.

We say that arithmetic holds for (d(S), o) or in other words (S(S),
o) is arithmetical, if d(S) has the factorization mentioned in the above
theorem. Let @ and b be two elements in S. If d(a) = d(b), a is said
to be quasi-equal to b; in symbol : a~ b.

Corollary. If (d(S), o) is arithmetical, then each element a in S is
factored as follows :

a~ (H pw(p, a)(+)) (1‘[ pn(p a)(—)),

where n(p, a) (+) and n(p, a) (—) are positive and negative exponents
of a at p.

Now we introduced lattice-theoretical divisor theory in [8]. From
this standpoint of view we obtain the following :

Theorem 5. Let S be a pal-semigroup with a. c. c. for elements in d
(D). Then the following three conditions are equivalent to one another :
(1) A divisor theory for I based on H exists.

(2) e is integrally closed.
(3) S is Artinian.

Proof. (1) = (2) is obtained by Theorem 3 in [8]. (2) = (8) is
immediate by Theorem 2. (3)= (1) : By Theorem 4 and Corollary 2 to
Theorem 3 in [8] we can show that (I, H, d, d(I)) is a divisor theory of
Ibased on H. Q. E. D.

In the rest of this section, we suppose that S = (S, », <) is a pal-
semigroup. If (S, *) is a group which is a restricted direct product of
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infinite cyclic groups with prime generators in I, we say that arithmetic
holds for S or S is arithmetical.

Theorem 6. If (S, *) is a group such that e is finitely attainable,
then arithmetic holds for S.

Proof. Sis clearly Artinian, so that e is integrally closed by Theo-
rem 4. Moreover a ~ b implies a = b, and every prime different from e
is divisor-free (maximal) in I. It is readily shown that if 7" is the join-
semi-lattice generated by H in S, then a. c. c. holds for elments in [ if
and only if T =L

Theorem 7. Let S be an Artinian semigroup. If a. c¢. ¢. holds for
the elements in I, and each prime element in I is divisor-free, then S is
arithmetical. ‘

Proof. It is clear that the condition (3) of Theorem 2. 6 in [1] is
true for our case. Therefore we obtain the result mentioned above. Q.
E. D.

Lastly we note that factorization of lattice-ideals in S is obtained,
utilizing the results in [4], [5], [6] and [7].
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