開水路乱流壁面近傍のレイノルズ応力 生成に果たす縦渦構造の役割

山下祐介*1 渡辺勝利*2

Role of Streamwise Vortex for Generation of Reynolds Shear Stress near Wall Region in Turbulent Open Channel Flow

Yusuke YAMASHITA^{*1}, Katsutoshi WATANABE^{*2}

Abstract

A streamwise vortex in wall bounded turbulent flow is inferred to play important role of transportation of mass and momentum in the flow field. However, many studies on the streamwise vortex are not enough to elucidate its dynamic characteristics. In this study, characteristics of the correlation between streamwise vortex formed near the bottom wall and the generation process of the Reynolds stress are investigated using the visualization techniques. As a result, it became clear that streamwise vortex plays an important role in the ejection process and in the sweep process which are generation process of Reynolds stress. Furthermore, characteristic of the inclination angle of the streamwise vortex are clarified.

Key Words: turbulent open channel flow, streamwise vortex, Reynolds shear stress, sweep, ejection

1.緒論

開水路,管路,境界層などの壁を有する壁乱流には, さまざまな組織構造が形成されることが知られている. 中でも縦渦構造は,乱流場におけるポンプの役割を果た し,質量や運動量の輸送を担う重要な組織構造と捉えら れている.縦渦構造とは,流れ方向に軸を持つ回転成分 を有する渦構造であり,これまでにもその諸特性に関す る数多くの研究が行われてきた¹⁾.その結果,時空間特性 については,流れの可視化や流速計測などの実験やDNS

(Direct Numerical Simulation) による数値計算により,存 在形態や挙動特性等が明らかにされている.しかし, せ ん断応力の生成,乱れの発生との相互関係といった流体 力学的な特性については,数値形計算によって究明が進 められているものの十分な解明に至っていないように思 われる.それらの解明は,流れの抵抗軽減や物質の効率 的な混合・拡散といった重要な工学的課題の解決する糸 口を与えるものと考えられる.

以上を踏まえて本研究では、流速計測、流れの可視化 実験を用いて、開水路乱流の底壁面付近に形成される縦 渦構造の特徴とレイノルズせん断応力との相互関係に関 する検討を行った.

2. 実験装置および方法

実験には、幅60cm、長さ10m、高さ15cm、水路勾配1/1000 に設定した、透明アクリル樹脂板製の滑面開水路を用い た.実験では、PTV(Particle Tracking Velocimetry)による流 速計測、蛍光染料注入による縦渦構造の可視化、さらに 縦渦構造と瞬時流情報との相互関係を検討するために PTVと蛍光染料注入法を併用した DPTV(Dye-streakpattern Particle Tracing Velovimetry)を用いた².

PTVにおいては、トレーサーとして微細粒子(平均粒 径150μm,比重1.04),照明としてスライドプロジェクタ

*1 環境建設工学専攻

*2 土木建築工学科

ー(1KW)のスリット光膜(厚さ3mm)を用いた. 同図(a)に 水平断面PTVの装置概要を示す. この微細粒子を混入し た水溶液を上流端から流れに連続的に注入した後,流れ の縦断面,水平断面におけるトレーサー粒子の流動状況 をハイビジョンカメラ(SONY HDR-FX-1000)で撮影した. PTVの解析においては,その粒子画像(1920×1080ピクセ ル)を連続的にコンピューターに取り込んだ.取り込み時 間は、1/3秒毎に60秒間とした. 画像データ取り込み後,

「Flow PTV」((株)ライブラリ)を用いて,瞬時流速成分を 求め,それらの統計解析を行い,平均流速および乱れの 分布を求めた.

縦渦構造の可視化では、トレーサーに蛍光染料水溶液 (比重1.005),照明に前出のスリット光を用いて流れの水 平,縦断,横断面視を行った.同図(b),(c)に縦断面視法, 横断面視法の概要を示す.これらの断面視では、本トレ ーサーを上流から一定量(約200cc)を注入した後に、流れ の各断面における状況をハイビジョンカメラで撮影した. なお、横断面視においては、可視化断面に影響を及ぼさ ない下流位置に設置した鏡(5cm×5cm)を用いて撮影した. DPTVでは、微細粒子と蛍光染料水溶液を流れに同時に注 入し、スリット光内に可視化された組織構造の断面形象 と粒子流動を同ハイビジョンカメラで撮影した.実験条 件の詳細は表1に示すとおりである.

3. 実験結果および考察

3.1 流速分布特性

図2は、Case Aにおける縦断面PTVによる流速計測結果 を示している.同図(a)は平均主流速(U)分布である.本 図の縦軸は壁面からの距離(y)を水深(H)で無次元化し、 横軸は平均主流速(U)を最大流速(Um)で無次元化して示し ている.この図より、底壁面付近で低速、自由表面付近 で高速となる開水路特有の流速分布を呈していることが 認められる.

同図(b)は平均主流速の対数分布である.本実験結果は, 壁乱流の普遍則である直線分布式,対数速度分布に従っ ていることが確かめられた.

同図(c)は乱れ強度分布である.本図の縦軸は乱れ強度 (u',v')を摩擦速度(U-)で無次元化して示し、横軸は壁面か らの距離(y)を水深(H)で無次元化して示している.乱れ強 度u'は主流方向流速の変動の大きさを示しており,それは y/H=0.1(y=0.7cm)付近で最大値が生じ,水表面に向かうに 従い減少している.一方,乱れ強度v'鉛直方向の速度変動 の大きさを表し,それはy/H=0.2(y=1.5cm)付近で最大値を 生じ,水表面方向に従緩やかに減少する傾向を示してい る.

同図(d)はレイノルズせん断応力(-uv)分布である.本図 の縦軸は壁面からの距離(y)を水深(H)で無次元化し,横軸 はレイノルズ応力(-uv)を摩擦速度(U・)の二乗で無次元化 して示している.レイノルズせん断応力は,乱れによる 鉛直方向の運動量輸送によって生ずるせん断応力である. 本図より,その値は水表面で0,底壁面付近で最大値を生 ずる三角形分布を呈し,その最大値H=0.14(y=1.0cm)で発 生している.

同図(e)はレイノルズせん断応力寄与率分布であり,縦 軸は寄与率(-(uv)i/uv)を示している.レイノルズせん断応 力は,主流速変動成分u'と鉛直方向変動成分v'の積として 求められる.この積は4つの象限,すなわち,1象限 (u>0,v>0)に分けられる.寄与率は各象限の値が時間平均 として求められたレイノルズせん断応力への寄与を示す. これより,レイノルズせん断応力の生成には2,4象限 の寄与が大きいことが明瞭であり,とくにレイノルズせ ん断応力の最大値が生じるy/H=1.4付近の寄与率に注目す ると,2象限が最大で,次いで4象限の寄与が大きく,

(e) レイノルズせん断応力の寄与率分布

1,3象限の寄与率は極めて小さい.

同図(f)は乱れエネルギー生成(-uv∂U /∂v)項分布で ある. 乱れエネルギーの生成項は乱れエネルギー方程式 における生成項分布を示す. 底壁面の極近くでは最大値 を生じ、水表面方向に急激に減衰している. 本項はレイ ノルズせん断応力と速度勾配の積で表されるが、レイノ ルズせん断応力の最大値よりもさらに低い位置に最大値 が生していることが認められる.

以上の計測結果より,壁面付近では乱れ強度,レイノ ルズせん断応力、乱れエネルギーのいずれもが大きい値 を有していることが明らかとなった.

3.2 底壁面付近の縦渦構造の特徴

流れ場に形成された縦渦構造の縦断面, 横断面, 水平

断面形象は図3に示すとおりである.同図(a)は横断面可 視化の全体を撮影したもので、流れ場に形成された縦渦 構造の横断面形象を示す. 縦渦構造の横断面は渦巻きの 形象を呈し、底壁面付近では小規模であり、壁から離れ た領域では大規模であることが認められる.

同図(b)は横断面の壁付近を可視化したもので,底壁面 近くの横断面視の一例を示す.壁面付近における縦渦構 造は回転運動が明瞭であり, 左右方向への顕著な揺動運 動も観察された.

同図(c),(d)は全水深と底壁面付近の縦渦構造の縦断 面視を示している. 縦渦構造の縦断面形象は底壁面付近 で縞(streak)状を呈し、壁から離れた領域では横断方向に 軸を有する横渦形象が観察される. 壁面付近のstreakは, 極壁近くでは底壁面とほぼ平行であるが、壁から離れる

(e)水平断面視(y=0.5cm,y/H=0.7)

図3 縦渦構造の可視化

に従って角度は急になることが観察された. その角度の 変化には側方からの流体の侵入が関係していることが観 察された、側方から侵入した流体は、図中の蛍光染料が 薄い黒い部分に相当し、壁から離れた相対的に高速な流 速と考えられる. 壁近くでは乱れ強度やレイノルズせん 断応力等の大きな値が生じていることから、これらとの 相互関係を考察することが重要である.

同図(e)は水平断面視(y=0.5cm,y/H=0.07)を示す.この 位置における縦渦構造の水平断面形象は縦断面形象同様 に縞状を呈する. この縞状の構造は低速縞(Low Speed Streaks, 以下LSSと呼ぶ)と呼ばれる組織構造である.こ の構造に関する既存研究より、その形成間隔は約100v/u* であることが知られており5,本図においてもほぼ同間隔 で形成されていることが認められる.一方,同図(f)の水 平断面視(y=1.0cm,y/H=0.14)は太いLSSに鉛直方向を軸と する渦形象が見られ、それら褶曲運動をしながら流下す ることが観察された.同高さにおいてレイノルズせん断 応力の最大値が発生しており、これらの構造の寄与の解 明は重要である.

図4は、縦断面視におけるstreakの傾斜角度を示してい る. 上述のように, 壁面付近の縦渦構造の縦断面視は

streak状を呈し、その傾斜角は縦渦構造の傾斜角と考えら れる. 縦渦構造の傾斜特性を把握するために, 縦断面視 の3分間に亘るビデオ映像において1秒間毎の各高さに おけるstreakの角度を計測した. これより縦渦構造の傾斜 角(TH)は図中に壁からの高さによって増加する傾向に

(b) Ejection 時における縦断面形象,瞬時主流分布,瞬時レイノルズせん断応力分布の経時変化 図5 縦断面 DPTV 解析結果

あることが明らかである. 傾斜角度の増加傾向は破線で 示したように3つの傾向((A): $0 < y^+ < 25$, (B): $25 < y^+ < 60$, (C): $y^+ > 60$)が認められる. (A)から(B)へ増加傾向か変化 する地点では、上述のようにレイノルズせん断応力の最 大値となる位置と一致しており、興味深い.

3.3 縦渦構造とレイノルズせん断応力の相互関係

底壁面付近の縦渦構造とレイノルズ応力生成との相互 関係を考察するためにDPTVのビデオ観察を行った.この 観察は、レイノルズせん断応力が最大値を示すy=1.0cmに おける急激な速度変動に注目した.その結果、底壁面付

図6 レイノルズ応力の生成と縦渦構造の相互関係

近では、レイノルズせん断応力の生成過程として知られるSweep(高速流体が壁面に下降する現象)と、Ejection(壁面付近から低速流が上昇する現象)が頻繁に観察された. 2分30秒間のビデオ観察ではSweepが18回、Ejectionが27回観察された.EjectionがSweepよりも発生回数が多く、この比を取ると3:2となる.この比は、図2(e)に示した寄与率分布の1cm付近(y/H=0.13)の寄与率の比とも等しくなる.

図5には、本実験で観察されたSweep、Ejectionにおける 縦渦構造の特徴との相互関係を示しているDPTV解析の 一例を示す.本図には、1/3秒毎の縦渦構造の縦断面形象 (上),瞬時主流速分布(中),瞬時レイノルズせん断応力 -uv(下)がそれぞれ示されている. 同図(a)は縦渦構造が, 回転運動によって高速下降流を誘起するSweepの流況に 相当する. ここに可視化された縦渦構造は可視化断面を 横切っており、上流部はその形象は薄くなっている.可 視化断面からはずれた領域は高速であり、断面形象が見 られる領域では低速であることが明らかである.また, この高速領域では顕著な下降流が生じており、4象限 (u>0,v<0)を示す変動ベクトルによって, 瞬時レイノルズ せん断応力の大きな値が帯状に分布していることが明ら かである.この図中の破線は図2(d)に示したレイノルズ せん断応力の最大値発生位置を示しており, そこではそ の最大値の5倍程度の値が生じている.

同図(b)は、低速流体が上昇するEjectionに相当する.こ こで可視化された縦渦構造の縦断面形象は流下に伴って、 上昇することが観察された.この上昇運動の発端となる が、可視化断面の側方から侵入する流体であり、それは T=1/3secの下流側のstreakの間に挟まれた蛍光染料の薄い 領域に相当する.この領域は低速である縦渦構造の形成 領域と異なり、比較的高速であることが明瞭である.こ の高速流の侵入によって.上流から移動してきた縦渦構 造は急激に減速し、侵入した流体に乗り上げ、結果的に 上昇することになると考えられる.この過程で2象限 (u<0,v>0)を示す変動ベクトルが生成され、最大値の6倍 弱の大きな瞬時レイノルズせん断応力が縦渦構造に沿っ て生成されていることが明らかである.

以上のように底壁面付近の縦渦構造は,瞬時レイノル ズせん断応力の生成に重要な役割を果たしていることが 明らかとなった.図6には、レイノルズせん断応力の生 成過程であるSweepおよびEjectionと縦渦構造の相互関係 の概念図を示している.Sweepでは、縦渦構造の回転運動 によって壁から離れた領域から高速流が底壁面付近に輸 送され、その過程で大きなレイノルズせん断応力 (u>0,v<0)が生成される.一方、Ejectionでは、Sweepによ って輸送された高速流体が流下する縦渦構造の下流に侵 入することにより、縦渦構造の急激な減速および上昇運 動(u<0,v>0)が発生し、大きなレイノルズせん断応力(-uv) が生成されると考えられる.

4.結 論

開水路乱流の底壁面付近に形成された縦渦構造とレイ ノルズせん断応力の相互関係について,流れの可視化法 を用いて検討した.以下に,本研究において得られた結 論を示す.

(1)壁面付近の縦渦構造の傾斜角度は壁面からの距離 に比例して増加するが、その増加率はバッファー層内,内 層外端付近で変化する.

(2) 底壁面付近の縦渦構造はレイノルズせん断応力を 発生させるSweep, Ejectionと密接に関係しており、瞬時レ イノルズせん断応力の生成に主要な役割を果たしている.

対献

1) Robinson, S.K : Coherent motion in the turbulent boundary layer, Annu. Rev Fluid Mech., Vol.23, pp.602-639, 1991.

 2) 大成博文,渡辺勝利,佐賀孝徳,斉藤隆,波多野慎:壁乱流の縦断面せん断構造,土木学会論文集,No.593/II-43, pp.31-40, 1998.

 Nezu,I :Numerical Calculation of Turbulent Open-Channel Flows in Consideration of Free-Surface Effect, Mem.Fac.Eng. Kyoto Univ.Vol. 49, No.2.

4) Klebanoff, P.S.: NACATN-2178 or Report 1247,1956.

5) Kline, S.J., Reynolds, W.C., Schraub, F.A., Runstadler, P.W. : The structure of turbulent boundary layers, J. Fluid Mech, vol.30, pp.741-773,1967.

(2009.09.28 受理)