1-Way versus 2-Way Alternating Multi-Counter
Automata with Sublinear Space

Tsunehiro YOSHINAGA™ and Makoto SAKAMOTO™?

Abstract

This paper investigates the difference in the accepting powers between 1-way and 2-way operations
of sublinear space-bounded alternating multi-counter automata. For each /> 1 and any function L(n), let
weak-1ACA(l, L(n)) (resp., strong-2ACA(l, L(n))) denote the class of sets accepted by weakly 1-way
(resp., strongly 2-way) L(n) space-bounded alternating /-counter automata. We show that for any function
L(n) such log L(n) = o(log n), strong-2ACA(1, log n)— U | <; < weak-1ACA(l, L(n))# ¢ . So, we have
m-1ACA(l, L(n)) G m-2ACA(l, L(n)) for each [> 1, each m & {strong, weak} and any function L(n) >

log n such that log L(n) = o(log n).

Key Words: alternating multi-counter automata, multi-inkdot, universal states, sublinear space,

computational complexity

1. Introduction and preliminaries

A multi-counter automaton (mca) is a mul-
ti-pushdown automaton whose pushdown stores
operate as counters, i.e., each storage tape is a
pushdown tape of the form Z ' (Z is a fixed symbol).
It is shown in Ref. 1) that 2-counter automata
without time or space limitations have the same
power as Turing machines; however, when time or
space restrictions are applied, a different situation
occurs (See, for example, Refs. 2), 3)).

From a theoretical point of view, in this paper,
we are interested in knowing fundamental proper-
ties of alternating mca’s (amca’s), and especially
investigate the essential difference between 1-way
and 2-way operations in the accepting powers of
amca’s which have sublinear space, in correspond-
ence to the result in Ref. 4).

A 2-way alternating multi-counter automaton M
is a generalization of a two-way nondeterministic
multi-counter automaton in the same sense as Ref.
5).

The state set of M is partitioned into universal
and existential states. Intuitively, in a universal state
M splits into some submachines which act in paral-
lel, and in an existential state A nondeterministi-
cally chooses one of possible subsequent actions. M

has the left endmarker “ ¢ ” and the right endmarker
“$” on the input tape, reads the input tape right or
left, and can enter an accepting state only when
falling off $. In one step M can also increment or
decrement the contents (i.e., the length) of each
counter by at most one.

For each / > 1, we denote a two-way alternating
l-counter automaton by 2aca(/). An instantaneous
description (ID) of 2aca(/) M is an element of

S x N x Su,

where Y. ($, ¢ €& Y) is the input alphabet of M, &
denotes the set of all non-negative integers, and

Sw=0x ({Z}")

where Q is the set of states. The first and second
components, w and #, of an ID

., 1))

represent the input string and the input head posi-
tion, respectively. The third component (g, (o1, o2,
...,ar)) of I represents the state of the finite control
and the contents of the / counters. [is said to be a
universal (existential, accepting) 1D if g is a uni-
versal (an existential, an accepting) state. An ele-
ment of S, (g, (a1, a2, ..., ar)), is called a storage
state of M.

I=w,1i, (g, (o1, 02, ..

*l Department of Computer Science and Electrics Engineering

* University of Miyazaki

I T2 m Y A JE AL EE NoA2 (2018)

Tsunehiro YOSHINAGA and Makoto SAKAMOTO “1-Way versus 2-Way Alternating Multi-Counter Automata with Sublinear Space”

The initial ID of Monw € Y is
Iv (W)=, 0, (qo, (A1, A2, ..., N))),

where qo is the initial state of M and A (1 <i <))
denotes the empty string.

We write 7 !’ and say that/' is a successor of
1 if an ID [' follows from an ID / in one step, ac-
cording to the transition function of M.

A computation path of M on input w is a se-
quence

lkul bu... bl (n=>0),

where lo=1m (w).

A computation tree of M on input w is a finite,
nonempty tree such that the root is labeled by the
initial ID /o, and the children of any non-leaf node =
labeled by a universal (an existential) ID, £(m), in-
clude all (one) of the immediate successors of £(m).

A computation tree of M on input w is accepting
if all the leaves are labeled by accepting ID’s. We
say that M accepts w if there is an accepting com-
putation tree of M on w.

For each storage state (¢, (au, az, ..., oz)) and for
each wEY", let a (q, (a1, az, ..., a1))-computation
tree of M on w be a computation tree of M whose
root is labeled with the ID (g, (o, 02, ..., ar)). (That
is, a (g, (au, 02, ..., ou))-computation tree of M on w
is a computation tree which represents a computa-
tion of M on w§ starting with the input head on the
leftmost position of w an d with the storage state (g,
(a1, 02, ..., 1))).

A (q, (o1, 02, ..., ai))-accepting computation tree
of Mon wisa(q, (a1, 02, ..., au))-computation tree
of M on w whose leaves are all labeled with ac-
cepting ID’s.

For any function L(n), M is weakly (strongly)
L(n) space-bounded if for any n > 1 and any input w
of length n accepted by M, there is an accepting
computation tree T of M on w such that for each
node m of t (if for any » > 1 and any input w of
length n (accepted or not), and each node m of any
computation tree of M on w), the length of each
counter of the ID £(x) is bounded by L(n). That is,
for each o in the ID €(w) = (w, i, (g, (o1, 02, ...,
ar))), o <L(n) (1<i<l).

A 1-way alternating /-counter automata (laca(/))
is a 2aca(/) whose input head cannot move to the
left.

For each / > 1 and any function L(n), let denote
by weak-2ACA(,L(n)) and strong-2ACA(l,L(n))
the classes of sets accepted by weakly and strongly
L(n) space-bounded 2aca(/), respectively and by
weak-1ACA(/,L(n)) and strong-1ACA([,L(n)) the
classes of sets accepted by weakly and strongly
L(n) space- bounded laca(/), respectively.

For any function L(n), we denote by weak-
2ATM(L(n)) (resp., weak-1ATM (L(n))) the class
of sets accepted by weakly 2-way (resp., 1-way)

L(n) space-bounded alternating Turing machines
(aTm’s). (If necessary, see Ref. 4) for weakly and
strongly L(n) space-bounded 1-way and 2-way
aTm’s).

Section 2 investigates the difference in the ac-
cepting power between 1-way and 2-way amca’s
with sublinear space, and shows that strong-
2ACA(1, log n)— U 1< xeweak-1ACA(l, L(n)) # ¢
for any function L(n) such that log L(n) = o(log n).
Section 3 concludes this paper by giving a few
open problems.

2. Result

It is shown in Ref. 4) that

weak-2ATM(loglog n)
— weak-1ATM(o(logn))# ¢.

Therefore, for any function L(n) such that loglog n
< L(n) = o(log n), it follows that

weak-1ATM(L(n)) € weak-2ATM(L(n)).

To obtain our corresponding result, we first need
the following lemma. From now on, logarithms are
base 2.

Lemma 2.1: Let

T = {B(L)#BQ2)#..#B(n)2wcwicwac...cwi
€{0,1,2,c,#} |n>2
&wE{0,1}Y &|w| =[logn]
&k>21& Vi(l<i<k)[wi €{0,1}7]
& Jj(l<j<k)w=wl},

where for each string v, |v| denotes the length of v,
and for each integer m > 1, B(m) denotes the string
in {0, 1}" that represents the integer m in binary
notation (with no leading zeros), so |B(m)| = [log m].
Then

(1) T = strong-2ACA(1, log n) and

2) T ¢ Ui < <o weak-1ACA(l, L(n)) for any
function L(n) such that log L(n) = o(log n).

Proof: (1) One can construct a strongly log n
space-bounded 2aca(l) M which acts as follows.
Suppose that an input string:

¢yttt y2wewiewsce...cwi S,

where n > 2, k > 1, and y’s, w and w;’s are in {0,
1}" is presented to M (Input strings in the form dif-
ferent from the above can easily be rejected by M).
It is shown in Ref. 3) that the set {B(1)#
BQ2)#..#B(n) | n>2} can be accepted by a strongly
log n space-bounded 2-way deterministic 1-counter
automaton. So, M can store [log n] (= |B(n)|) stack
symbols in the counter using the initial segment
B(1)# B(2)#..#B(n) of the input (Of course, M nev-

T8I T2 m S P A JE AL EE NoA2 (2018)

Tsunehiro YOSHINAGA and Makoto SAKAMOTO “1-Way versus 2-Way Alternating Multi-Counter Automata with Sublinear Space”

er enters an accepting state if y;# B(k) for some 1 <
k<n).

If M successfully complete this, then checks by
using [log n] stack symbols stored in the counter,
whether [w| = [log n].

After that, M again stores [log n] stack symbols
in the counter using |w| (= [log n]) and existentially
choses some j (1 <j < k) and checks w = w;. This
check can easily be done by first checking that |w)|
= [log n] and then universal checking that w(p) =
wi(p) for each 1 <p <|w| =|w)| = [log n], where for
each string v and each integer ¢ (1 < ¢ < v|), w(¢) de-
note the #-th symbol (from the left) of v.

It will be obvious that [log n] space is sufficient,
and M accepts the language 7.

(2) Suppose to the contrary that there exists a
weakly L(n) space-bounded laca(/) M accepting the
language 7, where logL(n) = o(log n) and / > 1 is
some constant.

For each n > 2, let

V(n) = {B(L#BQ2)#..#B(n)2wcwicwac...cwy
€ T|wl=[logn] &
Vi(1l<i<n)[|wi]=[logn]]} and
W(n) = {cwicwac...cw, €{0,1,¢c "]
Vi(l<i<n)[wi €{0,1}1°¢M]},

We consider the computations of M on the strings
in V(n).
Note that for eachx € V(n),

* xI= [B(D#BQR)#..#B(n)| + ([log n]+1)(n + 1)
=r(n)
= O(nlog n) and
+ there exists an accepting computation tree T of M
on x such that |o| < L(r(n)) (1 <i<1!), where o; is
in the ID £(m) = (w, i, (g, (o1, 02, ..., a;))) for
each node 7 of the tree t.

Let C(n) denote the set of all possible storage
states of M when M in the computation uses at most
L(r(n)) stack symbols in each counter, and let u(n)
= |C(n)|. Then, u(n) = O(L(r(n))") .

For each storage state (g, (a1, 02, ...,0y)) of M
and for each y in W(n), let

MY(q5 (a15 o2, ...,0y))

= 1 if there exists a (g, (a1, 0o, ...,04))-accepting
computation tree of M on y such that for
each node & of the tree, the storage state (g,
(au, az, ..., ay)) of the ID £(x) is in C(n),

= (0 otherwise.

For any strings y and z in W(n), we say y and z are
M-equivalent if for each storage state (g, (o, oo,
...01)) of M with |ay| < L(r(n)) (1 <i<1),

L07)) = MAq, (a1, 02, ...,00)).

Clearly M-equivalence is an equivalence relation on

M)’(qﬂ (ala 0“27 .-

strings in W(n), and there are at most
e(m) = O(¢"")

M-equivalent classes, where ¢ is a constant. We de-
note these M-equivalence classes by E1, F, ..., Ecw).
For each y = wewicwac...cw, in W(n), let

by)={u<{0,1}3i(1<i<n)[u=w]}.
Furthermore, for each n > 2, let

R(n)=1{b(y) |y €W (n);}.
Then

IR(n)| =,Ci1 +,Co+ ... +,Cp. =2"—1.

(Intuitively, |R(n)| is equal to the number of all the
nonempty subsets of {0, 1}11°¢"1),

Since e(n) = O(t"™), that is, e(n) < t’“", it fol-
lows that

loglog e(n) < cilog u(n)

for some constants >0, "> 0 and ¢; > 0.

Since u(n) = O(L(r(n))), that is, u(n) <
c2L(r(n)), it follows that

log u(n) = cslog L(r(n))

for some constants ¢, > 0 and ¢; > 0.
Since log L(r(n)) = o(log n), it follows that

logL(r(n)) = o(log r(n)).

Since r(n) = O(nlog n), that is, r(n) < csnlog n, it
follows that

log r(n) < cslogn

for some constants ¢4 > 0 and ¢s > 0. Hence, from
the equations above, we have

loglog e(n) < clog u(n) < ¢’log L(r(n))
= o(log r(n)) < o(log n).
for some constants ¢ > 0 and ¢’ > 0.
On the other hand, since |R(n)| = 2" —1, that is,
loglog |R(n)| = log n, it follows that
loglog e(n) < loglog |R(n)|.
Therfore, we have
e(n) <[R(n)|
for n large enough. For such n, the must be some O
and O’ (Q # Q’) in R(n) and some E; (1 <i < e(n))
such that the following statement holds:
“There exist two strings y’ = B(1)#B2)#...#B(n)2wy
and z’ = B(1#B(2)#...#B(n)2wz such that
(1) |wl = [logn],
(i)y,z € Wn),
(i) b(y) = Q and b(z) = Q"
(iv) wis in Q, but not in O, and
(v) both y and z are in E; (i.e., y and z are M-
equivalent)” .

T8I T2 m S P A JE AL EE NoA2 (2018)

Tsunehiro YOSHINAGA and Makoto SAKAMOTO “1-Way versus 2-Way Alternating Multi-Counter Automata with Sublinear Space”

As is easily seen, y’ is in V(n), and so there ex-
ists an accepting computation tree of M on y’ such
that for each node © of the tree, the contents of each
counter in {(n) are bounded by L(r(n)). From this
tree, we easily construct an accepting computation
tree of M on z’ such that for each node « of the tree,
the contents of each counter in £(x) are bounded by
L(r(n)). Thus, we can conclude that z’ is also ac-
cepted by M, which is a contradiction, because z” is
not in 7. [

From Lemma 2.1, we have:

Theorem 2.2:
strong-2ACA(1, log n)
— Ui<i<wweak-1ACA(l, L(n))=¢
for any function L(n) such that log L(r) = o(log n).

Corollary 2.3: For each m € {strong, weak}, each [
> 1 and any function L(#n) such that L(n) > log n and
log L(n) = o(log n),

m-1ACA(l, L(n)) & m-2ACA(/, L(n)).

3. Conclusion

We have investigated the accepting power of
sublinear space-bounded 1-way and 2-way amca’s
and show that for any function L(#n) such that log
L(n) = o(log n),

strong-2ACA(1, log n)

— Ui<i<wweak-1ACA(l, L(n))=¢.

Finally, we conclude this paper by giving two
open problems relating this research:

For each me< {weak, strong}, each d= {1, 2},
each / > 1 and any function log n < L(n) such that
log L(n) = o(log n),

(1) does exist an infinite hierarchy among m-dACA

(I, L(n))’s? and
(2) is m-dACA(l, L(n)) closed under Boolean oper-

ation, Kleene closure, concatenation, and ho-

momorphism?

Acknowledgement

This work was supported by JSPS KAKENHI
Grant Number 17K00025.

References

1) Minsky, M.L.: Recursive unsolvability of Post's problem of
‘Tag’ and other topics in the theory of Turing Machines,
Annals of Math., Vol.74, No.3, pp.437-455 (1961).

2) Inoue, K., Ito, A. and Takanami, I.: A note on real-time
one-way alternating multicounter machines, Theoret. Com-
put. Sci., Vol.88, pp.287—296 (1991).

3) Yoshinaga, T. and Inoue, K.: A note on alternating mul-
ti-counter automata with small space, Trans. of IPSJ., Vol.36,
No.12, pp2741-2753 (1995).

4) Ito, A., Inoue, K. and Takanami, I.: A note alternating Turing
machines using small space, IEICE Trans., Vol.E70, NO.10,
pp-990-996 (1987).

5) Chandra, A.K., Kozen D.C. and Stockmeyer, L.J.: Alterna-
tion, J. ACM, Vol.28, No.1, pp.114-133 (1981).

(Received September 3, 2018)

T8I T2 m S P A JE AL EE NoA2 (2018)

	01 表紙
	02 目次
	03 中表紙
	白紙
	○紀要義永H30原稿（再修正）2018.10.15
	○20181023_校正1_紀要原稿_山田
	○H30紀要大橋提出r3
	○論文原稿（宇野）
	○研究紀要_髙木
	04 裏表紙
	05 目次（英語）

