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Abstract 

 
This paper investigates the difference in the accepting powers between 1-way and 2-way operations 

of sublinear space-bounded alternating multi-counter automata. For each l  1 and any function L(n), let 
weak-1ACA(l, L(n)) (resp., strong-2ACA(l, L(n))) denote the class of sets accepted by weakly 1-way 
(resp., strongly 2-way) L(n) space-bounded alternating l-counter automata. We show that for any function 
L(n) such log L(n) = o(log n), strong-2ACA(1, log n)－∪1  l <∞ weak-1ACA(l, L(n))≠φ. So, we have 
m-1ACA(l, L(n)) ⊊ m-2ACA(l, L(n)) for each l  1, each m ∈ {strong, weak} and any function L(n)  
log n such that log L(n) = o(log n). 
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1. Introduction and preliminaries 
 

A multi-counter automaton (mca) is a mul-
ti-pushdown automaton whose pushdown stores 
operate as counters, i.e., each storage tape is a 
pushdown tape of the form Z i (Z is a fixed symbol). 
It is shown in Ref. 1) that 2-counter automata 
without time or space limitations have the same 
power as Turing machines; however, when time or 
space restrictions are applied, a different situation 
occurs (See, for example, Refs. 2), 3)). 
   From a theoretical point of view, in this paper, 
we are interested in knowing fundamental proper-
ties of  alternating mca’s (amca’s), and especially 
investigate the essential difference between 1-way 
and 2-way operations in the accepting powers of 
amca’s which have sublinear space, in correspond-
ence to the result in Ref. 4).  

A 2-way alternating multi-counter automaton M 
is a generalization of a two-way nondeterministic 
multi-counter automaton in the same sense as Ref. 
5).  

The state set of M is partitioned into universal 
and existential states. Intuitively, in a universal state 
M splits into some submachines which act in paral-
lel, and in an existential state M nondeterministi-
cally chooses one of possible subsequent actions. M 

has the left endmarker “￠” and the right endmarker 
“$” on the input tape, reads the input tape right or 
left, and can enter an accepting state only when 
falling off $. In one step M can also increment or 
decrement the contents (i.e., the length) of each 
counter by at most one. 
   For each l  1, we denote a two-way alternating 
l-counter automaton by 2aca(l). An instantaneous 
description (ID) of 2aca(l) M is an element of 

 

      ∑* × Գ × SM,  
 

where ∑ ( $, ￠∉	∑ ) is the input alphabet of M, Գ  
denotes the set of all non-negative integers, and  
 

      SM =Q × ({Z}*)l  
 

where Q is the set of states. The first and second 
components, w and i, of an ID  
 

      I = (w, i, (q, (α1, α2, …, αl )))  
 

represent the input string and the input head posi-
tion, respectively. The third component (q, (α1, α2, 
…,αl)) of I represents the state of the finite control 
and the contents of the l counters. I is said to be a 
universal (existential, accepting) ID if q is a uni-
versal (an existential, an accepting) state. An ele-
ment of SM, (q, (α1, α2, …, αl )), is called a storage 
state of M.  
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The initial ID of M on w ∈ ∑* is 
 

IM (w) = (w, 0, (q0, (λ1, λ2, …, λl))), 
 

where q0 is the initial state of M and λi (1 ≤ i ≤ l) 
denotes the empty string.  
   We write I┣M I' and say that I' is a successor of 
I if an ID I' follows from an ID I in one step, ac-
cording to the transition function of M.  
   A computation path of M on input w is a se-
quence 
 

       I0┣M I1┣M …┣M In  (n  0), 
 

where I0 = I M (w). 
    A computation tree of M on input w is a finite, 
nonempty tree such that the root is labeled by the 
initial ID I0, and the children of any non-leaf node π 
labeled by a universal (an existential) ID, ℓ(π), in-
clude all (one) of the immediate successors of ℓ(π). 
   A computation tree of M on input w is accepting 
if all the leaves are labeled by accepting ID’s. We 
say that M accepts w if there is an accepting com-
putation tree of M on w. 
   For each storage state (q, (α1, α2, …, αl )) and for 
each w∈∑*, let a (q, (α1, α2, …, αl ))-computation 
tree of M on w be a computation tree of M whose 
root is labeled with the ID (q, (α1, α2, …, αl )). (That 
is, a (q, (α1, α2, …, αl ))-computation tree of M on w 
is a computation tree which represents a computa-
tion of M on w$ starting with the input head on the 
leftmost position of w an d with the storage state (q, 
(α1, α2, …, αl ))).  

A (q, (α1, α2, …, αl ))-accepting computation tree 
of M on w is a (q, (α1, α2, …, αl ))-computation tree 
of M on w whose leaves are all labeled with ac-
cepting ID’s.   
   For any function L(n), M is weakly (strongly) 
L(n) space-bounded if for any n  1 and any input w 
of length n accepted by M, there is an accepting 
computation tree τ of M on w such that for each 
node π of τ (if for any n  1 and any input w of 
length n (accepted or not), and each node π of any 
computation tree of M on w), the length of each 
counter of the ID ℓ(π) is bounded by L(n). That is, 
for each αi in the ID ℓ(π) = (w, i, (q, (α1, α2, …, 
αl ))), |αi| ≤ L(n) ( 1 ≤ i ≤ l ). 
   A 1-way alternating l-counter automata (1aca(l)) 
is a 2aca(l) whose input head cannot move to the 
left. 
   For each l  1 and any function L(n), let denote 
by weak-2ACA(l,L(n)) and strong-2ACA(l,L(n)) 
the classes of sets accepted by weakly and strongly 
L(n) space-bounded 2aca(l), respectively and by 
weak-1ACA(l,L(n)) and strong-1ACA(l,L(n)) the 
classes of sets accepted by weakly and strongly 
L(n) space- bounded 1aca(l), respectively.  
   For any function L(n), we denote by weak- 
2ATM(L(n)) (resp., weak-1ATM (L(n))) the class 
of sets accepted by weakly 2-way (resp., 1-way) 

L(n) space-bounded alternating Turing machines 
(aTm’s). (If necessary, see Ref. 4) for weakly and 
strongly L(n) space-bounded 1-way and 2-way 
aTm’s). 
   Section 2 investigates the difference in the ac-
cepting power between 1-way and 2-way amca’s 
with sublinear space, and shows that strong- 
2ACA(1, log n)－∪1 l<∞weak-1ACA(l, L(n)) ≠ φ 
for any function L(n) such that log L(n) = o(log n). 
Section 3 concludes this paper by giving a few 
open problems. 
 
2. Result 
 
   It is shown in Ref. 4) that 

    weak-2ATM(loglog n)  
        － weak-1ATM(o(log n)) ≠ φ. 

Therefore, for any function L(n) such that loglog n 
≤ L(n) = o(log n), it follows that 

weak-1ATM(L(n)) ⊊ weak-2ATM(L(n)). 

To obtain our corresponding result, we first need 
the following lemma. From now on, logarithms are 
base 2. 
 
Lemma 2.1: Let 

T = {B(1)#B(2)#...#B(n)2wcw1cw2c…cwk  

∈{ 0, 1, 2, c, # }+ | n  2  
& w ∈{ 0, 1 }+ & |w| = ڿlog n ۀ 
& k  1 & ∀i ( 1 ≤ i ≤ k )[ wi ∈{ 0, 1 }+] 
& ∃j ( 1 ≤ j ≤ k )[ w = wj ]}, 

 

where for each string v, |v| denotes the length of v, 
and for each integer m  1, B(m) denotes the string 
in {0, 1}+ that represents the integer m in binary 
notation (with no leading zeros), so |B(m)| = ڿlog mۀ. 
Then 
 

(1) T ∈ strong-2ACA(1, log n) and 
 

(2) T ∉ ∪1  l <∞ weak-1ACA(l, L(n)) for any 
function L(n) such that log L(n) = o(log n). 

 

Proof: (1) One can construct a strongly log n 
space-bounded 2aca(1) M which acts as follows. 
Suppose that an input string:  
 

 ￠y1#y2#...yn2wcw1cw2c…cwk $, 
 

where n  2, k  1, and yi’s, w and wj’s are in {0, 
1}+ is presented to M (Input strings in the form dif-
ferent from the above can easily be rejected by M).  

It is shown in Ref. 3) that the set {B(1)# 
B(2)#...#B(n) | n  2} can be accepted by a strongly 
log n space-bounded 2-way deterministic 1-counter 
automaton. So, M can store ڿlog nۀ	 (= |B(n)|) stack 
symbols in the counter using the initial segment 
B(1)# B(2)#...#B(n) of the input (Of course, M nev-
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er enters an accepting state if yk≠B(k) for some 1 ≤ 
k ≤ n ).  

If M successfully complete this, then checks by 
using ڿlog nۀ	 stack symbols stored in the counter, 
whether |w| = ڿlog nۀ.  

After that, M again stores ڿlog nۀ	 stack symbols 
in the counter using |w| (= ڿlog nۀ) and existentially 
choses some j (1 ≤ j ≤ k) and checks w = wj. This 
check can easily be done by first checking that |wj| 
 = w(p)	that	checking	universal	then	and	ۀlog nڿ =
wj(p) for each 1 ≤ p ≤ |w| = |wj| = ڿlog nۀ, where for 
each string v and each integer t (1 ≤ t ≤ |v|), v(t) de-
note the t-th symbol (from the left) of v. 

It will be obvious that ڿlog nۀ space is sufficient, 
and M accepts the language T. 

 

(2) Suppose to the contrary that there exists a 
weakly L(n) space-bounded 1aca(l) M accepting the 
language T, where logL(n) = o(log n) and l  1 is 
some constant.  

For each n  2, let 
   

V(n) = {B(1)#B(2)#...#B(n)2wcw1cw2c…cwn 
∈ T | |w| = ڿlog nۀ	& 
∀i ( 1 ≤ i ≤ n )[ |wi| = ڿlog nۀ]} and 

W(n) = {cw1cw2c…cwn ∈{ 0, 1, c }+ |  
∀i ( 1 ≤ i ≤ n )[ wi ∈{ 0, 1 } ڿlog nۀ]}. 

 

We consider the computations of M on the strings 
in V(n).  
   Note that for each x ∈ V(n), 
 

・|x|= |B(1)#B(2)#...#B(n)| + (ڿlog nۀ൅1)(n + 1) 
  = r(n) 

= O(nlog n) and 
・there exists an accepting computation tree τ of M 

on x such that |αi| ≤ L(r(n)) (1 ≤ i ≤ l ), where αi is 
in the ID ℓ(π) = (w, i, (q, (α1, α2, …, αl ))) for 
each node π of the tree τ.  

 

   Let C(n) denote the set of all possible storage 
states of M when M in the computation uses at most 
L(r(n)) stack symbols in each counter, and let u(n) 
= |C(n)|. Then, u(n) = O(L(r(n))l) . 

For each storage state (q, (α1, α2, …,αl )) of M 
and for each y in W(n), let 
 

My(q, (α1, α2, …,αl ))  
 

= 1 if there exists a (q, (α1, α2, …,αl ))-accepting 
computation tree of M on y such that for 
each node π of the tree, the storage state (q, 
(α1, α2, …, αl )) of the ID ℓ(π) is in C(n), 

 

= 0 otherwise. 
For any strings y and z in W(n), we say y and z are 
M-equivalent if for each storage state (q, (α1, α2, 
…,αl )) of M with |αi| ≤ L(r(n)) (1 ≤ i ≤ l ), 
 

My(q, (α1, α2, …,αl )) = Mz(q, (α1, α2, …,αl )). 
 

Clearly M-equivalence is an equivalence relation on 

strings in W(n), and there are at most 
 

   e(n) = O(t u(n))  
 

M-equivalent classes, where t is a constant. We de-
note these M-equivalence classes by E1, E2, …, Ee(n). 

For each y = wcw1cw2c…cwn in W(n), let  
 

b(y)={u∈{ 0, 1 }+|∃i ( 1 ≤ i ≤ n )[u = wi]}. 
 

Furthermore, for each n  2, let  
 

R(n) = {b(y) | y ∈W (n)}.  
 

Then 
 

|R(n)| = nC1 + nC2 + … + nCn. = 2n－1. 
 

(Intuitively, |R(n)| is equal to the number of all the 
nonempty subsets of {0, 1}ڿlog n ۀ).  
   Since e(n) = O(t u(n)), that is, e(n) ≤ t’ u(n), it fol-
lows that  
 

        loglog e(n) ≤ c1log u(n) 
 

for some constants t > 0, t’ > 0 and c1 > 0. 
Since u(n) = O(L(r(n))l), that is, u(n) ≤  

c2L(r(n))l, it follows that  
 

log u(n) = c3log L(r(n)) 
 

for some constants c2 > 0 and c3 > 0. 

Since log L(r(n)) = o(log n), it follows that  
 

logL(r(n)) = o(log r(n)). 
 

Since r(n) = O(nlog n), that is, r(n) ≤ c4nlog n, it 
follows that  

 

log r(n) ≤ c5log n 
 

for some constants c4 > 0 and c5 > 0. Hence, from 
the equations above, we have  
 

loglog e(n) ≤ clog u(n) ≤ c’log L(r(n)) 
= o(log r(n)) ≤ o(log n). 

 

for some constants c > 0 and c’ > 0.  
   On the other hand, since |R(n)| = 2n－1, that is, 
loglog |R(n)| = log n, it follows that 

 

loglog e(n) < loglog |R(n)|. 
 

Therfore, we have  
 

e(n) < |R(n)| 
 

for n large enough. For such n, the must be some Q 
and Q’ ( Q ≠ Q’ ) in R(n) and some Ei (1 ≤ i ≤ e(n)) 
such that the following statement holds: 
“There exist two strings y’ = B(1)#B(2)#...#B(n)2wy 

and z’ = B(1)#B(2)#...#B(n)2wz such that  
(ⅰ) |w| = ڿlog nۀ,  
(ⅱ) y, z ∈ W(n),  
(ⅲ) b(y) = Q and b(z) = Q’, 
(ⅳ) w is in Q, but not in Q’, and 
(ⅴ) both y and z are in Ei (i.e., y and z are M- 

equivalent)” . 
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As is easily seen, y’ is in V(n), and so there ex-
ists an accepting computation tree of M on y’ such 
that for each node π of the tree, the contents of each  
counter in ℓ(π) are bounded by L(r(n)). From this 
tree, we easily construct an accepting computation 
tree of M on z’ such that for each node π of the tree, 
the contents of each counter in ℓ(π) are bounded by 
L(r(n)). Thus, we can conclude that z’ is also ac-
cepted by M, which is a contradiction, because z’ is  
not in T.                         □ 
 

From Lemma 2.1, we have: 
 

Theorem 2.2:  
strong-2ACA(1, log n)  

－∪1  l <∞ weak-1ACA(l, L(n)) =φ 
for any function L(n) such that log L(n) = o(log n). 
 
Corollary 2.3: For each m∈{strong, weak}, each l 
 1 and any function L(n) such that L(n)  log n and 
log L(n) = o(log n),  

m-1ACA(l, L(n)) ⊊ m-2ACA(l, L(n)). 
 
3. Conclusion 
 

We have investigated the accepting power of 
sublinear space-bounded 1-way and 2-way amca’s 
and show that for any function L(n) such that log 
L(n) = o(log n), 

strong-2ACA(1, log n)  
－∪1  l <∞ weak-1ACA(l, L(n)) =φ. 

Finally, we conclude this paper by giving two 
open problems relating this research: 

For each m∈{weak, strong}, each d∈{1, 2}, 
each l  1 and any function log n ≤ L(n) such that 
log L(n) = o(log n), 
(1) does exist an infinite hierarchy among m-dACA 

(l, L(n))’s? and 
(2) is m-dACA(l, L(n)) closed under Boolean oper-

ation, Kleene closure, concatenation, and ho-
momorphism?  
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