

徳山工業高等専門学校研究紀要 №42(2018)

1-Way versus 2-Way Alternating Multi-Counter
Automata with Sublinear Space

Tsunehiro YOSHINAGA*1 and Makoto SAKAMOTO*2

Abstract

This paper investigates the difference in the accepting powers between 1-way and 2-way operations

of sublinear space-bounded alternating multi-counter automata. For each l  1 and any function L(n), let
weak-1ACA(l, L(n)) (resp., strong-2ACA(l, L(n))) denote the class of sets accepted by weakly 1-way
(resp., strongly 2-way) L(n) space-bounded alternating l-counter automata. We show that for any function
L(n) such log L(n) = o(log n), strong-2ACA(1, log n)－∪1  l <∞ weak-1ACA(l, L(n))≠φ. So, we have
m-1ACA(l, L(n)) ⊊ m-2ACA(l, L(n)) for each l  1, each m ∈ {strong, weak} and any function L(n) 
log n such that log L(n) = o(log n).

Key Words: alternating multi-counter automata, multi-inkdot, universal states, sublinear space,

computational complexity

*1 Department of Computer Science and Electrics Engineering

*2 University of Miyazaki

1. Introduction and preliminaries

A multi-counter automaton (mca) is a mul-
ti-pushdown automaton whose pushdown stores
operate as counters, i.e., each storage tape is a
pushdown tape of the form Z i (Z is a fixed symbol).
It is shown in Ref. 1) that 2-counter automata
without time or space limitations have the same
power as Turing machines; however, when time or
space restrictions are applied, a different situation
occurs (See, for example, Refs. 2), 3)).
 From a theoretical point of view, in this paper,
we are interested in knowing fundamental proper-
ties of alternating mca’s (amca’s), and especially
investigate the essential difference between 1-way
and 2-way operations in the accepting powers of
amca’s which have sublinear space, in correspond-
ence to the result in Ref. 4).

A 2-way alternating multi-counter automaton M
is a generalization of a two-way nondeterministic
multi-counter automaton in the same sense as Ref.
5).

The state set of M is partitioned into universal
and existential states. Intuitively, in a universal state
M splits into some submachines which act in paral-
lel, and in an existential state M nondeterministi-
cally chooses one of possible subsequent actions. M

has the left endmarker “￠” and the right endmarker
“$” on the input tape, reads the input tape right or
left, and can enter an accepting state only when
falling off $. In one step M can also increment or
decrement the contents (i.e., the length) of each
counter by at most one.
 For each l  1, we denote a two-way alternating
l-counter automaton by 2aca(l). An instantaneous
description (ID) of 2aca(l) M is an element of

 ∑* × Գ × SM,

where ∑ ($, ￠∉	∑) is the input alphabet of M, Գ
denotes the set of all non-negative integers, and

 SM =Q × ({Z}*)l

where Q is the set of states. The first and second
components, w and i, of an ID

 I = (w, i, (q, (α1, α2, …, αl)))

represent the input string and the input head posi-
tion, respectively. The third component (q, (α1, α2,
…,αl)) of I represents the state of the finite control
and the contents of the l counters. I is said to be a
universal (existential, accepting) ID if q is a uni-
versal (an existential, an accepting) state. An ele-
ment of SM, (q, (α1, α2, …, αl)), is called a storage
state of M.

1

Tsunehiro YOSHINAGA and Makoto SAKAMOTO “1-Way versus 2-Way Alternating Multi-Counter Automata with Sublinear Space”

徳山工業高等専門学校研究紀要 №42(2018)

The initial ID of M on w ∈ ∑* is

IM (w) = (w, 0, (q0, (λ1, λ2, …, λl))),

where q0 is the initial state of M and λi (1 ≤ i ≤ l)
denotes the empty string.
 We write I┣M I' and say that I' is a successor of
I if an ID I' follows from an ID I in one step, ac-
cording to the transition function of M.
 A computation path of M on input w is a se-
quence

 I0┣M I1┣M …┣M In (n  0),

where I0 = I M (w).
 A computation tree of M on input w is a finite,
nonempty tree such that the root is labeled by the
initial ID I0, and the children of any non-leaf node π
labeled by a universal (an existential) ID, ℓ(π), in-
clude all (one) of the immediate successors of ℓ(π).
 A computation tree of M on input w is accepting
if all the leaves are labeled by accepting ID’s. We
say that M accepts w if there is an accepting com-
putation tree of M on w.
 For each storage state (q, (α1, α2, …, αl)) and for
each w∈∑*, let a (q, (α1, α2, …, αl))-computation
tree of M on w be a computation tree of M whose
root is labeled with the ID (q, (α1, α2, …, αl)). (That
is, a (q, (α1, α2, …, αl))-computation tree of M on w
is a computation tree which represents a computa-
tion of M on w$ starting with the input head on the
leftmost position of w an d with the storage state (q,
(α1, α2, …, αl))).

A (q, (α1, α2, …, αl))-accepting computation tree
of M on w is a (q, (α1, α2, …, αl))-computation tree
of M on w whose leaves are all labeled with ac-
cepting ID’s.
 For any function L(n), M is weakly (strongly)
L(n) space-bounded if for any n  1 and any input w
of length n accepted by M, there is an accepting
computation tree τ of M on w such that for each
node π of τ (if for any n  1 and any input w of
length n (accepted or not), and each node π of any
computation tree of M on w), the length of each
counter of the ID ℓ(π) is bounded by L(n). That is,
for each αi in the ID ℓ(π) = (w, i, (q, (α1, α2, …,
αl))), |αi| ≤ L(n) (1 ≤ i ≤ l).
 A 1-way alternating l-counter automata (1aca(l))
is a 2aca(l) whose input head cannot move to the
left.
 For each l  1 and any function L(n), let denote
by weak-2ACA(l,L(n)) and strong-2ACA(l,L(n))
the classes of sets accepted by weakly and strongly
L(n) space-bounded 2aca(l), respectively and by
weak-1ACA(l,L(n)) and strong-1ACA(l,L(n)) the
classes of sets accepted by weakly and strongly
L(n) space- bounded 1aca(l), respectively.
 For any function L(n), we denote by weak-
2ATM(L(n)) (resp., weak-1ATM (L(n))) the class
of sets accepted by weakly 2-way (resp., 1-way)

L(n) space-bounded alternating Turing machines
(aTm’s). (If necessary, see Ref. 4) for weakly and
strongly L(n) space-bounded 1-way and 2-way
aTm’s).
 Section 2 investigates the difference in the ac-
cepting power between 1-way and 2-way amca’s
with sublinear space, and shows that strong-
2ACA(1, log n)－∪1 l<∞weak-1ACA(l, L(n)) ≠ φ
for any function L(n) such that log L(n) = o(log n).
Section 3 concludes this paper by giving a few
open problems.

2. Result

 It is shown in Ref. 4) that

 weak-2ATM(loglog n)
 － weak-1ATM(o(log n)) ≠ φ.

Therefore, for any function L(n) such that loglog n
≤ L(n) = o(log n), it follows that

weak-1ATM(L(n)) ⊊ weak-2ATM(L(n)).

To obtain our corresponding result, we first need
the following lemma. From now on, logarithms are
base 2.

Lemma 2.1: Let

T = {B(1)#B(2)#...#B(n)2wcw1cw2c…cwk

∈{ 0, 1, 2, c, # }+ | n  2
& w ∈{ 0, 1 }+ & |w| = ڿlog n ۀ
& k  1 & ∀i (1 ≤ i ≤ k)[wi ∈{ 0, 1 }+]
& ∃j (1 ≤ j ≤ k)[w = wj]},

where for each string v, |v| denotes the length of v,
and for each integer m  1, B(m) denotes the string
in {0, 1}+ that represents the integer m in binary
notation (with no leading zeros), so |B(m)| = ڿlog mۀ.
Then

(1) T ∈ strong-2ACA(1, log n) and

(2) T ∉ ∪1  l <∞ weak-1ACA(l, L(n)) for any
function L(n) such that log L(n) = o(log n).

Proof: (1) One can construct a strongly log n
space-bounded 2aca(1) M which acts as follows.
Suppose that an input string:

 ￠y1#y2#...yn2wcw1cw2c…cwk $,

where n  2, k  1, and yi’s, w and wj’s are in {0,
1}+ is presented to M (Input strings in the form dif-
ferent from the above can easily be rejected by M).

It is shown in Ref. 3) that the set {B(1)#
B(2)#...#B(n) | n  2} can be accepted by a strongly
log n space-bounded 2-way deterministic 1-counter
automaton. So, M can store ڿlog nۀ	 (= |B(n)|) stack
symbols in the counter using the initial segment
B(1)# B(2)#...#B(n) of the input (Of course, M nev-

2

Tsunehiro YOSHINAGA and Makoto SAKAMOTO “1-Way versus 2-Way Alternating Multi-Counter Automata with Sublinear Space”

徳山工業高等専門学校研究紀要 №42(2018)

er enters an accepting state if yk≠B(k) for some 1 ≤
k ≤ n).

If M successfully complete this, then checks by
using ڿlog nۀ	 stack symbols stored in the counter,
whether |w| = ڿlog nۀ.

After that, M again stores ڿlog nۀ	 stack symbols
in the counter using |w| (= ڿlog nۀ) and existentially
choses some j (1 ≤ j ≤ k) and checks w = wj. This
check can easily be done by first checking that |wj|
 = w(p)	that	checking	universal	then	and	ۀlog nڿ =
wj(p) for each 1 ≤ p ≤ |w| = |wj| = ڿlog nۀ, where for
each string v and each integer t (1 ≤ t ≤ |v|), v(t) de-
note the t-th symbol (from the left) of v.

It will be obvious that ڿlog nۀ space is sufficient,
and M accepts the language T.

(2) Suppose to the contrary that there exists a
weakly L(n) space-bounded 1aca(l) M accepting the
language T, where logL(n) = o(log n) and l  1 is
some constant.

For each n  2, let

V(n) = {B(1)#B(2)#...#B(n)2wcw1cw2c…cwn
∈ T | |w| = ڿlog nۀ	&
∀i (1 ≤ i ≤ n)[|wi| = ڿlog nۀ]} and

W(n) = {cw1cw2c…cwn ∈{ 0, 1, c }+ |
∀i (1 ≤ i ≤ n)[wi ∈{ 0, 1 } ڿlog nۀ]}.

We consider the computations of M on the strings
in V(n).
 Note that for each x ∈ V(n),

・|x|= |B(1)#B(2)#...#B(n)| + (ڿlog nۀ൅1)(n + 1)
 = r(n)

= O(nlog n) and
・there exists an accepting computation tree τ of M

on x such that |αi| ≤ L(r(n)) (1 ≤ i ≤ l), where αi is
in the ID ℓ(π) = (w, i, (q, (α1, α2, …, αl))) for
each node π of the tree τ.

 Let C(n) denote the set of all possible storage
states of M when M in the computation uses at most
L(r(n)) stack symbols in each counter, and let u(n)
= |C(n)|. Then, u(n) = O(L(r(n))l) .

For each storage state (q, (α1, α2, …,αl)) of M
and for each y in W(n), let

My(q, (α1, α2, …,αl))

= 1 if there exists a (q, (α1, α2, …,αl))-accepting
computation tree of M on y such that for
each node π of the tree, the storage state (q,
(α1, α2, …, αl)) of the ID ℓ(π) is in C(n),

= 0 otherwise.
For any strings y and z in W(n), we say y and z are
M-equivalent if for each storage state (q, (α1, α2,
…,αl)) of M with |αi| ≤ L(r(n)) (1 ≤ i ≤ l),

My(q, (α1, α2, …,αl)) = Mz(q, (α1, α2, …,αl)).

Clearly M-equivalence is an equivalence relation on

strings in W(n), and there are at most

 e(n) = O(t u(n))

M-equivalent classes, where t is a constant. We de-
note these M-equivalence classes by E1, E2, …, Ee(n).

For each y = wcw1cw2c…cwn in W(n), let

b(y)={u∈{ 0, 1 }+|∃i (1 ≤ i ≤ n)[u = wi]}.

Furthermore, for each n  2, let

R(n) = {b(y) | y ∈W (n)}.

Then

|R(n)| = nC1 + nC2 + … + nCn. = 2n－1.

(Intuitively, |R(n)| is equal to the number of all the
nonempty subsets of {0, 1}ڿlog n ۀ).
 Since e(n) = O(t u(n)), that is, e(n) ≤ t’ u(n), it fol-
lows that

 loglog e(n) ≤ c1log u(n)

for some constants t > 0, t’ > 0 and c1 > 0.
Since u(n) = O(L(r(n))l), that is, u(n) ≤

c2L(r(n))l, it follows that

log u(n) = c3log L(r(n))

for some constants c2 > 0 and c3 > 0.

Since log L(r(n)) = o(log n), it follows that

logL(r(n)) = o(log r(n)).

Since r(n) = O(nlog n), that is, r(n) ≤ c4nlog n, it
follows that

log r(n) ≤ c5log n

for some constants c4 > 0 and c5 > 0. Hence, from
the equations above, we have

loglog e(n) ≤ clog u(n) ≤ c’log L(r(n))
= o(log r(n)) ≤ o(log n).

for some constants c > 0 and c’ > 0.
 On the other hand, since |R(n)| = 2n－1, that is,
loglog |R(n)| = log n, it follows that

loglog e(n) < loglog |R(n)|.

Therfore, we have

e(n) < |R(n)|

for n large enough. For such n, the must be some Q
and Q’ (Q ≠ Q’) in R(n) and some Ei (1 ≤ i ≤ e(n))
such that the following statement holds:
“There exist two strings y’ = B(1)#B(2)#...#B(n)2wy

and z’ = B(1)#B(2)#...#B(n)2wz such that
(ⅰ) |w| = ڿlog nۀ,
(ⅱ) y, z ∈ W(n),
(ⅲ) b(y) = Q and b(z) = Q’,
(ⅳ) w is in Q, but not in Q’, and
(ⅴ) both y and z are in Ei (i.e., y and z are M-

equivalent)” .

3

Tsunehiro YOSHINAGA and Makoto SAKAMOTO “1-Way versus 2-Way Alternating Multi-Counter Automata with Sublinear Space”

徳山工業高等専門学校研究紀要 №42(2018)

As is easily seen, y’ is in V(n), and so there ex-
ists an accepting computation tree of M on y’ such
that for each node π of the tree, the contents of each
counter in ℓ(π) are bounded by L(r(n)). From this
tree, we easily construct an accepting computation
tree of M on z’ such that for each node π of the tree,
the contents of each counter in ℓ(π) are bounded by
L(r(n)). Thus, we can conclude that z’ is also ac-
cepted by M, which is a contradiction, because z’ is
not in T. □

From Lemma 2.1, we have:

Theorem 2.2:
strong-2ACA(1, log n)

－∪1  l <∞ weak-1ACA(l, L(n)) =φ
for any function L(n) such that log L(n) = o(log n).

Corollary 2.3: For each m∈{strong, weak}, each l
 1 and any function L(n) such that L(n)  log n and
log L(n) = o(log n),

m-1ACA(l, L(n)) ⊊ m-2ACA(l, L(n)).

3. Conclusion

We have investigated the accepting power of
sublinear space-bounded 1-way and 2-way amca’s
and show that for any function L(n) such that log
L(n) = o(log n),

strong-2ACA(1, log n)
－∪1  l <∞ weak-1ACA(l, L(n)) =φ.

Finally, we conclude this paper by giving two
open problems relating this research:

For each m∈{weak, strong}, each d∈{1, 2},
each l  1 and any function log n ≤ L(n) such that
log L(n) = o(log n),
(1) does exist an infinite hierarchy among m-dACA

(l, L(n))’s? and
(2) is m-dACA(l, L(n)) closed under Boolean oper-

ation, Kleene closure, concatenation, and ho-
momorphism?

Acknowledgement

This work was supported by JSPS KAKENHI
Grant Number 17K00025.

References

1) Minsky, M.L.: Recursive unsolvability of Post's problem of

‘Tag’ and other topics in the theory of Turing Machines,
Annals of Math., Vol.74, No.3, pp.437–455 (1961).

2) Inoue, K., Ito, A. and Takanami, I.: A note on real-time
one-way alternating multicounter machines, Theoret. Com-
put. Sci., Vol.88, pp.287—296 (1991).

3) Yoshinaga, T. and Inoue, K.: A note on alternating mul-
ti-counter automata with small space, Trans. of IPSJ., Vol.36,
No.12, pp2741–2753 (1995).

4) Ito, A., Inoue, K. and Takanami, I.: A note alternating Turing
machines using small space, IEICE Trans., Vol.E70, NO.10,
pp.990–996 (1987).

5) Chandra, A.K., Kozen D.C. and Stockmeyer, L.J.: Alterna-
tion, J. ACM, Vol.28, No.1, pp.114–133 (1981).

 (Received September 3, 2018)

4

	01 表紙
	02 目次
	03 中表紙
	白紙
	○紀要義永H30原稿（再修正）2018.10.15
	○20181023_校正1_紀要原稿_山田
	○H30紀要大橋提出r3
	○論文原稿（宇野）
	○研究紀要_髙木
	04 裏表紙
	05 目次（英語）

