41

Two-Way Alternating Counter Automata
with Only Universal States

Tsunehiro YOSHINAGA™' and Katsushi INOUE "

Abstract

A counter automaton is a pushdown automaton with only one pushdown symbol. A two-way
alternating counter automaton (2aca) is a generalization of a two-way nondeterministic counter automaton
(2nca). The state set of 2aca is partitioned into universal and existential states. In this paper, from a
theoretical interest, we investigate a relationship between the accepting powers of 2aca's with only
universal states (2uca's) and two-way deterministic counter automata (2dca's), and show that 2uca's are
more powerful than 2dca's. Since 2nca's are 2aca's with only existential states, our result can be regarded
as the pair to Chrobak's one in Refs. 2), 3) that 2nca's are better than 2dca's.

Key Words: alternating counter automata, two-way counter automata, alternation,
universal states, computational complexity

1. Introduction and Preliminaries

A counter automaton is a pushdown automaton
with only one pushdown symbol Z That is, its
pushdown tape is of the form 7.

A two-way alternating counter automaton (2aca)
M is the generalization of a two-way nondeterministic
counter automaton in the same sense as in Ref. 1). That
is, the state set of M/ is divided into two disjoint sets, the
set of universal states and the set of existential states.
Intuitively, in a universal state A/ splits into some
submachines which act in parallel, and in an existential
state A/ nondeterministically chooses one of possible
subsequent actions.

We assume that A has the left endmarker “¢” and
the right endmarker “$” on the input tape, reads the
input tape in two directions (that is, right or left). We
also assume that in one step M can increment or
decrement the contents (that is, the length) of the
counter by at most one.

We denote by 2uca (2nca) a 2aca with only
universal states (with only existential states, i.e., a two-
way nondeterministic counter automaton), and denote
atwo-way deterministic counter automaton by 2dca.

Let denote by 2dsfa(2) a two-way deterministic
simple 2-head finite automaton. That is, the first head

1
' Department of Computer Science and Electronics Engineering

2 . . .
! Yamaguchi University

(called the seeing head) can sense input symbols while
the second head (called the b/ind head) can only detect
the endmarkers ¢ and $.

2ACA, 2UCA, 2NCA, 2DCA, and 2DSFA(2) are
the classes of languages accepted by the corresponding
automata.

Chrobak solved the open problem posed in Ref. 4)
and showed in Refs. 2), 3) that

“2DCA G 2NCA”

In this paper, from a theoretical interest, we
investigate the relationship between 2DCA and 2UCA,
and show that

“2DCA G 2UCA”

Since 2uca's and 2nca's are 2aca's with only universal
and existential states, respectively, ours can be regarded
as the pair to the result of Chrobak above.

2. Results

The results obtained in this paper are based on

T L T2 S P AR e R 2

42 Tsunehiro YOSHINAGA and Katsushi INOUE

those in Refs. 2), 3). Let

E= {X]#Xz#”.#xﬂkz 1&
31> 0)[Vi(1 <i<kxe{0, 1}]]}.

Let X be a finite alphabet and /#: E — X" be a function
such that for every wy, w, € E,

(a) if wy = w, then h(wy) # h(w,), and

(b) if [wy| = wf then [a(wy) = [a(w),

where for any string v, |[v| denotes the length of v. Now,
the following languages are defined.

= {xofth(x ittt Hxy) | xiftxoft. #x. e E&
31 <j<h)x=x0]}, and

L' = (xth(adbatt.) | xitboh. # e E&
Vi1 <j < k)x# x0)}.

Then, Chrobak modified the proof in Ref 5) and
proved in Refs. 2), 3) that “Z", ¢ 2DSFA(2).”
In correspondence to this result, we can show:

Theorem 1. ", ¢ 2DSFA(2).

Especially, to obtain the result that “Z", ¢ 2NCA”,
as a function /4, Chrobak defined in Refs. 2), 3)

Ayttt . Hx) = sCe HSQe) .. #s(xy)

for any x#x,#. .. #x € I, where

12 211
27 an2 a,

S(alaz. .. a,_la,) = a121+1a2
where ¢; € {0, 1} foreach 1 <i <.

We can gain, using the same function / defined as
above, our corresponding result:

Theorem 2. ", € 2UCA.
3. The proof of Theorem 1

This proof is almost the same as that of “2DSFA(2)
el in Ref. 2). But we will give a sketch of it below,
because the present paper is made to be self-contained
and we believe that this proof is instructive. For the
convenience of the reader, the notation is taken from
Refs 2),3), 5).

We take now arbitrary 2dsfa(2) M and show that M/
cannot accept ", We construct two languages £, {0,
1} and L, < #2 " such that

No.26 (2002)

(A) for every different strings w, we L, there exists y
€ L, such that exactly one of yw, v belongs to ",
and

(B) there exist different strings W, w € 1, such that for
everyy € L, yw € LIM) iftyw € L(M),

where /(M) denotes the set of input strings accepted by
an automaton M. From (A) and (B), we easily derive
that 2", # L(M).

Let O be the set of states of M and w be an input of
length n. A configuration of M on w is a triple (g, i, /),
where g€ O, 0<i<pmtl and 0< j< ntl are the
positions of the seeing head and the blind head,
respectively. We assume that the computation starts
and halts in configurations of the form (g, 0,0) for
some g € Q.

Letx,y,z €{0, 1} and consider the computation of
M on xyz. Let Co, C, be configurations of M on x)z
such that in C the seeing head is on the first or on the
last symbol of y, and in C, the seeing head is on the
symbol immediately to the right or left of y. The
computation of M from Cyto C, is called an internal
compultation on the triple (x,y, z) if during it the seeing
head is always on y and the blind head never reaches
the endmarkers.

Lemma 1. If m is large enough then there are two
different strings u, v € {0, 1}" such that for every pair
of strings x, z and every pair of configurations C, C,. of
M, there is an internal computation of M from C, to C,
on the triple (x, %, z) if and only if there is an internal
computation of M from C to C, on the triple (x, v, z).

Let m, u, v be fixed, satisfying Lemma 1. By n we
denote an integer whose value will be specified later.
Let

Li={u,v}"and

Ly={#h(z#z,# #z,,)|Vi(l<i< 2"
[z el]&z <z, <. <z},

where z; < z, means that the binary number represented
by z; is smaller than the one represented by z. From
the condition (a) of function / in the previous section
and the definition of L,, we obtain:

Lemma 2. For every two different strings w, w € [,
there is a string y € 7, such that exactly one of yw, yw

Two—Way Alternating Counter Automata with Only Universal States 43

. . h
iIsinlL’,

Lety=ypx...yn € L1, where each y; is either u or v.
Then, y; is called the i-th block of y. Let e be the length
of the strings in 7, (by the condition (b), all strings in 7,
are of equal length). We set d=mmn+ e and by N; we
denote the set {0, 1,...,d+1}. Then Q x N; x N, is the
set of all possible configurations of M on the strings
from 1, L,.

Let o be the set of all configurations C'in Q x N x
N, such that the position p of the seeing head in C
satisfies 1 <p < mmn, and the blind head is in C on one
of the endmarkers.

Lety ely, wel, and C,C.eo. If there is a
computation of M on yw from (toC, then this
computation is called a computation segment if every
configuration between Cy and C, is not in G.

Lemma 3. Let ye [, wel, and (, C.€ o, and
assume that the seeing head is on the i-th block of y in
Cy and on the j~th block of y in C. If there is a
computation segment of A on yw from C, to C, then,
for all y' € [, with the same i-th and j~th blocks as y,
there is a computation segment of M from Cy to C, on

1

yw.

For every string w € L, we define a partial function
@ 6 % {u, v}*— o as follows: Let y € ; have the i-th
block p and the j-th block ¢, where p, g € {u, v}. Let C,
(" € o be such that the seeing head is on the i-th block
of y in C and on the j-th block of y in C". If there is a
computation segment of M on yw from C to C’ then
2/C,p,q)=C", otherwise g,(C, p, ¢) is undefined. By
Lemma 3, g,, is well defined for any w €L,.

Lemma 4. If n is large enough then there are two
strings W, w € [, such that for every y € L, yw €
L(M) iffyw € L(M).

2n
Proof. Because of the condition (a) there are (THJ

strings in Z,. The number of partial functions from & x
{u, v}* into & is (2| Qmn+1*9"™ So if n is large enough
then there must be two strings W, w € [, such that

gi=gy. But then yw € L(M) iff yw € L(M) for every y
S]41. o

Thus, from Lemmas 2 and 4, we obtain the
conditions (A) and (B), respectively, what

completes the proof of Theorem 1. For the proofs
of Lemmas 1 and 3, see Ref. 5).

4. The proof of Theorem 2

We can construct a 2uca A/ which accepts L.

Suppose that an input string

w=xdttnitty#. . i
(where xo€{0, 1} and ,€{0, 1,2} for each 1 <i<k)
is presented to M. (Input strings in the form different
from the above can easily be rejected by M)

M first checks if for each 1<i< £, y,=s(x;) for
some x; {0, 1}, and if all x/s (0 <i < k) are of equal
length. (Note that the function s has been already
defined in the section 2.) It is clear that these checks
can be done deterministically using one counter.

M then checks universally if xy# x; for each 1 <i <
k. To do so, M acts as follows. M stores xo(1) in the
finite control and / (=]x,|) on the counter, where for each
string v, v(7) denotes the i-th symbol (from the left) of v.

Afterward, M moves right while making a
universal branch at the first symbol of each x; (1 <j <k).
M checks whether xo(1) =x(1) or not. If xo(1)#x(1)
then M goes ahead to enter an accepting state,
otherwise M executes the following step.

Suppose that M has already verified that x(f) = x(7)
for each 1 << -1, the head is on the symbol x(i-1),
and the counter is empty. Now, M checks if xo(7) # x,(7).
Let d be the distance between the first # and x(i-1). M
moves left increasing the counter one by one until it
reaches the left endmarker ¢. Then, the counter stores
d+l.

After that, M moves right on x, while increasing the
counter and making a universal branch at each symbol
Xo(p) 2 <p <[). M stores xo(p) in its finite control. At
this time, it is easily observed that M stores d+ [+ p on
the counter.

At last, M moves to the first #, and again moves
right decreasing now the counter until it becomes
empty. Let ¢ be the symbol scanned by the head when
the counter becomes empty. The distance between the
position of the head and x(i-1) is /+p. Hence, the
equivalence holds:

p=iiffce{0, 1} iff c=x(i).
If (¢=2) or (¢ #2 and c# x¢(i)) then M accepts the
input w, otherwise (i.e., ¢ #2 and ¢ = x(i)) M continues

the computation above. After M sees that x,=x;, it
rejects w.

T L T2 S P AR e R 2

44 Tsunehiro YOSHINAGA

5. Conclusions

Since 2DCA < 2DSFA(2), from Chrobak's results
in Refs. 2), 3) and our theorems described in the section
2, it follows that

2DCA & 2NCAand2DCA & 2UCA,

respectively. We can consider the results above a dual
and a complementary pair.

Unfortunately, the following problems are still
open:

(1) Is 2NCA incomparable with 2UCA?,
(2)2NCA ¢ 2ACA?,

(3)2UCA ¢ 2ACA?,

(4)2DCA G 2NCAU2UCA?, and
(5)2NCAN2UCA G 2ACA?

No.26 (2002)

and Katsushi INOUE

References

1) Chandra, A. K, Kozen, D. C. and Stockmeyer, L. J.: Alternation,
J. ACM, Vol. 28, PP. 114-133 (1981).

2) Chrobak, M.: Variations on the technique of Duris and Galil, J.
Comput. Syst. Sci., Vol. 30, PP. 77-85 (1985).

3) Chrobak, M.: Nondeterminism is essential for two-way counter
machines, in MFCS'84, 11th Symp., LNSC 176, Springer-Verlarg,
PP. 240-244 (1984).

4) Galil, Z.: Some open problems in the theory of computation as
questions about two-way deterministic pushdown automata
languages, Math. Systems Theory, Vol. 10, PP. 211-228 (1977).

5) Durig, P. and Galil, Z.: Fooling a two way automata or one
pushdown store is better than one counter for two way machines,
Theor. Comput. Sci., Vol. 21, PP. 39-53 (1982).

(Received September 2, 2002)

