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Abstract

This paper investigates a hierarchical property based on the number of inkdots in the accepting pow-
ers of sublinear space-bounded multi-inkdot two-way alternating multi-counter automata with only uni-
versal states. For each />1, each m>0, and any function L(n), let weak-2UCA™(/, L(n)) and
strong-2UCA™(l, L(n)) denote the classes of sets accepted by weakly and strongly L(#) space-bounded
m-inkdot two-way alternating /-counter automata with only universal states, respectively. We show that
for any function L() such log L(r) = o(log n), strong-2UCA™(1, log n)— U | < <eweak-2UCA™(l, L(n))
# ¢ . So, we have x-2UCA™(l, L(n)) ¢ x-2UCA™ (I, L(n)) for each /> 1, eachx € {strong, weak} and

any function L(n) 2 log » such that log L(r) = o(log n).
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1. Introduction

A multi-counter automaton is a multi-pushdown
automaton whose pushdown stores operate as counters,
i.e., each storage tape is a pushdown tape of the form 2
(Z is a fixed symbol). It is shown in Ref 1) that
2-counter automata without time or space limitations
have the same power as Turing machines; however,
when time or space restrictions are applied, a different
situation occurs (See, for example, Refs. 2), 3)).

In order to show a strong separation of determinis-
tic and nondeterministic complexity classes, in Ref. 4),
Ranjan et al. introduced a slightly modified Turing
machine model, called an inkdot Turing machine. The
inkdot Turing machine is a 2-way Turing machine with
the additional power of marking at most 1 tape-cell in
the input tape (with an inkdot) once. The action of the
machine depends on the current states, the input and
the work tape symbols scanned currently, and the
presence of the inkdot on the currently scanned
tape-cell. It is shown in Ref. 4) that for sublogarithmic
space-bounded inkdot Turing machines, deterministic

and nondeterministic space complexity classes are not
equal. Inoue et al. showed in Ref. 5), that there exists a
set accepted by a strongly loglog » space-bounded
inkdot 2-way nondeterministic Turing machine, but not
accepted by any weakly o(log ») space-bounded 2-way
nondeterministic Turing machines. From now on,
logarithms are base 2.

After that, the multi-inkdot Turing machine was in-
troduced in Ref. 6) as an extension of the inkdot Turing
machine. An m-inkdot Turing machine, m > 1, is a
2-way Turing machine with » dots of ink. Thus, it can
mark at m tape-cells on the input, once on each cell. Its
action is similar to that of the inkdot Turing machine. In
Ref. 6), it is shown that for nondeterministic subloga-
rithmic space complexity class, m+1 inkdots are better
than m.

Furthermore, in Ref. 7), Inoue et al. generalized the
inkdot nondeterministic Turing machine to the inkdot
alternating Turing machine, and showed that there is a
set accepted by a strongly log log » space-bounded
2-way altemating inkdot Turing machine, but not ac-
cepted by any weakly o(log #) space-bounded 2-way
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alternating Turing machine. In Ref. 8), inkdot alternat-
ing multi-counter automata were also introduced, and it
is proven that the class of sets accepted by L(n)
space-bounded inkdot 2-way alternating multi-counter
automata with only existential (universal) states is not
closed under complementation, where L(#) is any func-
tion such that /(n) >log »nand log Z(n) = o(log n).

Of course, an altemating m-inkdot 2-way Turing
machine is an alternating version of the m-inkdot Tur-
ing machine stated above, in the same sense as in Ref.
9). Xu et al. in Ref 10) introduced sublogarithmic
space-bounded multi-inkdot 2-way altemating Turing
machines and pushdown automata with constant
leaf-size and showed that for the classes of sets ac-
cepted by these, m+1 inkdots are better than m. In Ref
11), Miyamoto et al. showed the corresponding result
to the above for multi-inkdot 2-way alternating
multi-counter automata with constant leaf-size and
sublinear space. In Ref. 12), Yoshinaga et al. got the
pair to the result in Ref. 6). That is, they showed that
sublogarithmic space-bounded alternating Turing ma-
chines with only universal states which have m+1 ink-
dots are more powerful than those which have m.

From a theoretical point of view, in this paper, we
are interested in knowing fundamental properties of
multi-inkdot altemating multi-counter automata, and
especially investigate a hierarchy in the accepting pow-
ers of the automata which have only universal states
and sublinear space, in correspondence to the result in
Ref 12).

Section 2 gives some definitions and notations
necessary for this paper. Section 3 investigates, for
multi-inkdot 2-way alternating multi-counter automata
with sublinear space and only universal states, how the
number of inkdots affects the accepting powers of these
automata. For each /> 1, each m >0, and any function
L(n), let weak-2UCA™(I, L(n)) (strong-2UCA™(l, L(n)))
denote the class of sets accepted by weakly (strongly)
L(n) space-bounded m-inkdot 2-way alternating -
counter automata with only universal states. We show
that for any function Z(») such that log L(n) = o(log »),
strong-2UCA™(1, log n) — U i rweak-2UCA™(,
L(n))# ¢ . Section 4 concludes this paper by giving a
few open problems.

2. Preliminaries
A 2-way alternating multi-counter automaton

(2amca) M is a generalization of a two-way nondeter-
ministic multi-counter automaton. The state set of M is
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partitioned into universal and existential states. Intui-
tively, in a universal state M splits into some subma-
chines which act in parallel, and in an existential state
M nondeterministically chooses one of possible subse-
quent actions. M has the left endmarker “ ¢ and the
right endmarker “$” on the input tape, reads the input
tape right or left, and can enter an accepting state only
when falling off'$. In one step M can also increment or
decrement the contents (i.e., the length) of each counter
by at most one.

For each / > 1, we denote a two-way alternating
lcounter automaton by 2aca(l). An instantaneous de-
scription (ID) of 2aca(/) M is an element of

SN XS,
where X (§, ¢ & X)isthe input alphabet of M, &
denotes the set of all non-negative integers, and

S=0X(2))’!
where Q is the set of states. The first and second com-
ponents, w and i, of an ID

I=w, i, (¢, (@1, s ...,2)
represent the input string and the input head position,
respectively. The third component (g, (a1, @2, ...,a7)
of [ represents the state of the finite control and the
contents of the / counters. / is said to be a universal
(existential, accepting) 1D if q is a universal (an exis-
tential, an accepting) state. An element of S, is called a
storage state of M. The initial ID of Monw € X is

IM (W) = (W,O, (qO’ (/L /1: b /1))):
S
where ¢, is the initial state of A/ and A denotes the
empty string.

We write ] |, I' and sayI"is a successor of I if an
ID 7" follows from an ID / in one step, according to the
transition function of M.

A computation path of M on input w is a sequence

L !‘Mll I‘M l_M[n (n=0),
where Io=1,, (W).

A computation tree of M on input w 1is a finite,
nonempty tree such that the root is labeled by the initial
ID I, and the children of any non-leaf node = la-
beled by a universal (an existential) ID, £( ), include
all (one) of the immediate successors of £( 7t ).

A computation tree of M on input w is accepting if
all the leaves are labeled by accepting ID’s. We say that
M accepts w if there is an accepting computation tree
of Monw.

For any function L(r), M is weakly (strongly) L(n)
space-bounded if for any » > 1 and any input w of
length 7 accepted by M, there is an accepting computa-
tiontree t of M on w such that for eachnode 7 of
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t (if for any n > 1 and any input w of length » (ac-
cepted or not), and each node x of any computation
tree of A on w), the length of each counter in £(7) is
bounded by Z(n).

We denote by 2uca(l) (2nca(/)) a 2aca(/) with only
universal states (existential states, i.€., a 2-way nonde-
terministic /-counter automaton). Further, we denote by
2dca(l) a 2-way deterministic /-counter automaton.

For each y €{a, u, n, d}, An m-inkdot 2yca(l)
Ryca”(), m 2 0, is a 2yca(/) with m dots of ink (Note
that “2yca’(l)’ stands for the 2yca(/)’). It can mark at
most m tape-cells on the input (with its 7 inkdots), each
of which is marked once with one inkdot and the inkdot
is never erased. Its action depends on the current state,
the currently scanned input symbol, the contents of the
counters and the presence of inkdot on the currently
scanned tape-cell. The action consists of entering a new
state, moving the input head in specified directions, and
making appropriate changes on the counters, in accor-
dance with the transition relation. In addition, one of the
unused inkdots may be used to mark the currently
scanned cell on the input tape.

For each m > 0, each / > 1, and any function Z(),
let denote by weak (strong)-2ACA"([L(r)), weak
(strong)-2UCA™(LL(n)), weak (strong)-2NCA™ (I, L(n)),
and weak (strong)-2DCA"(I, I(n)) the classes of sets
accepted by strongly (weakly) L(n) space-bounded
2aca”(/), 2uca”(/), 2nca”(}), and 2dca™(/), respectively.

A 2-way altemating Turing machine (2aTm) we
consider in this paper has a read-only input tape and a
separate storage tape. We denote a 2aTm with only
universal and existential states by 2uTm and 2nTm,
respectively, and also denote a 2-way deterministic
Turing machine by 2dTm. For each m > 0 and any
function 7.(n), let denote the classes of sets accepted by
strongly (weakly) (#) space-bounded m-inkdot 2aTm,
2uTm, 2nTm and 2dTm by weak (strong)-2ATM"
(L(m)), weak (strong)-2UTM"(L(n)), weak (strong)-
2NTM"(L(n)), and weak (strong)-2DTM"(L(n)), re-
spectively.

3. Result

It is shown in Refs. (6, (10 that foreach m > 1,
strong-NTM™(log log )
—weak-2NTM"(o(log n))# ¢ .
In correspondence to the result above, it is implicitly
shown in Ref. (11 that for each m > 1 and any function
I(n) such that log Z(n) = o(log n),
strong-2NCA™(1, log n)
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— U1 <i<oWeak-2NCA"(l, Ln))# ¢ .
It is shown in Ref. (12 that for each m > 1,
strong-UXTM™" (log log )
—weak-2UTM"(o(log n))# ¢ .
Our corresponding result is:
Theorem 3.1: For each m > 0 and any function Z(r)
such that log L(n ) = o(log »),
strong-2UCA™\(1, log n)
— Uy <r<ceak-2UCA™(l, L(n))# ¢ .
Proof: Foreachm > 1, let
T(m) ={B(1)# B(2)#...# B(n)cw cw,cC...
CW}, CCW 1 CW 5 C...CW,, CC...
cew oW, ,.c..cw,, cu € {0,1,¢,#}" |
nz28&uef{0,jl"g
Vs(I<s<m)[r,21&Vi(1<t<r)
[w, e {0,/ N &3i(1<i<m)
(Vi< j<r)lu=w]ll,
where for each integer £ > 1, B(k) denotes the string in
{0, 1}" that represents the integer & in binary notation
(with no leading zeros).
[1] We first show that
“Tim+1) € strong-2UCA™(1, log n)”.
One can construct a strongly log » space-bounded
2uca™'(1) M which acts as follows.
Suppose that an input string;
EyHy, . Hy,omew,comy, cowyewyC...

cW,, CC...CCW, cu$
2

mH’lCWmH’ZC...CW

m+11y
(where n > 2, 7,2 1, and y¢’s, wy's and u are all in {0,
1Y) is presented to A (Input strings in the form differ-
ent from the above can easily be rejected by M). It is
shown in Ref. 3) that the set {B(1)# BQ#..#B(n)|n>
2} can be accepted by a strongly log 7 space-bounded
2dca(1). So, M can store ' log n 1 stack symbols in the
counter using the initial segment B(1)# BQ.. #B(n) of
the input (Of course, M never enters an accepting state
if y#B(k) forsome 1 < k < n).

If M successfully complete this, then it checks, by
using  log » T stack symbols stored in the counter,
whether wy| = u|=" logn" .

After that, in the first block:

W , cw IZC"cwlrl

[TPL]

M universally branches and marks the symbol “c” just
before wy; by the (first) inkdot in order to check
whether 4 # wy; foreach 1 <7 < ry. That is, M can
check by using " log »n 1 stack symbols stored in the
counter and the inkdot as a pilot if ¥ #+ wy; while
moving its input head back and forth. If M verifies that
u # wy;then M goes to the right endmarker $ and en-
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ters an accepting state. Otherwise, M moves to the
second block and universally checks whether u # wy,
for each 1 <j < 7, in the same manner as the first
block above, using the (second) inkdot. This action is
continued until for some 1 < i < m+1, in the ith
block, # # wy is verified for each 1 <j < r(that is,
this input is accepted).

If all checks throughout m+1 blocks are unsuc-
cessful, then M which has no its inkdots any more
never enters an accepting state. It will be obvious that
Mlogn1 space and m+1 inkdots are sufficient, and A/
accepts the set 7{m+1).

[2] We then show that
“Nm+1) ¢ Uq<i<oweak-2UCA™(, L(m)),”
where L(n) is a function such that log Z(»n) = o(log ).
Suppose to the contrary that there exists a weakly 7(r)
space-bounded 2uca™(/) M accepting 7(m+1), where /
> 1 is some constant. For each #>2, let
V(n) ={BO)#B2#.. #B(m)y,y,..V, .4

e{0,Lc,#) | Vi(l<i<m+])

Ly, € W(m]&u e 0,1,
where
W(n) ={cwew,c..cw,c € {0,1,c}|
Vi< j<m)[w, € {0,111}

We consider the computations of A/ on the strings in

(). Let In) be the length of each element in V().

Then, {r) = O(nlog n). Let C(r) denote the set of all

possible storage states of M/ when M in the computa-

tion uses at most L(/(r)) stack symbols in each counter,
and let u(r2) be the number of elements of C(n). Then,
ur~OLUn)).

For any two strings x and y in #(rn), we say that x
and y are M-equivalent, if for each pair of storage states
q,q9 € ((n), each integer 1 <i<m andd, d €
{right, left}},

(1) there exists an L(/(n)) space-bounded computation
in which A enters x in g with i inkdots (resp.,
without inkdots) from the d end, and afterwards
exits x in ¢’ from the d' end without consuming the
inkdots on the way,
<
there exists an Z(/(n)) space-bounded computation
in which A enters y in ¢ with i inkdots (resp.,
without inkdots) from the ¢ end, and afterwards
exits ) in ¢’ from the &’ end without consuming the
inkdots on the way,

(ii) there exists a computation in which A enters x in g
with / inkdots (resp., without inkdots) from the d
end, and afterwards exits x from the d' end using
some counters of length larger than L({r)) with-
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out consuming the inkdots on the way,
<
there exists a computation in which Menters y in g
with 7 inkdots (resp., without inkdots) from the d
end, and afterwards exits y from the o’ end using
some counters of length larger than Z(/(z2)) without
consuming the inkdots on the way, or
(iii) there exists a computation in which A enters x in g
with i inkdots from the d end, and never exits x,
&
there exists a computation in which A£ enters y in
g with i inkdots from the & end, and never exits y.
Clearly M-equivalence is an equivalence relation on
W(n), and there are at most e(n) = O( “®*"?)
M-equivalent classes, where ¢ is a constant. For each
Y = Ccwew,C...cw,
inWn),letb(p)={w| Ji(1 <i<nw= w]}.
Furthermore, for each n>2, let R(n)={ b() |y €
W (n)}. Then,

N I .

(Intuitively, |R(n)| is equal to the number of all the

nonempty subsets of {0,1} " &" ' )

From the assumption that Z(#) = o(log 7) and from
the fact that () = O(n log n), it follows that |R(n)| >
e(n) for n large enough, and so there must exist two
Me-equivalent elements y and y' in W(n) such that ()
#+ b(y"). We can, without loss of generality, assume
that there is a string

u € {0,1} """ 'suchthatu € b(3)—b().
Consider the following string z:

z=B(IHBQY.. BBy s .. Ve,

where y1=y,= ... =y =Y. Since y (= cwicwsc...

cw,) contains some segment w; (1 < i < »n) which

equals %, z is not in 7(m+1). So z is never accepted by

M, that is, there is at least one computation path Iy /1y

kv ... kL (g=1) of M on z with the following prop-
erties (P1), (P2) and (Ps):

(Py) £ is not an accepting ID and the length of each
counter in /; is bounded by Z(jz]) for each i (0 < i
<my,

(P [l foreach 1, (0 < i</ <g);

(Ps) 1, is such that

(1)1, 1s anon-accepting halting ID,

(ii)l,=Iforsomei(0 < i<g),or

(iii) the length of some counter is larger than Z(Jz[).
Fix such a computation path of A on z with the proper-
ties above, and denote it by comp(z). Since M has at
most m inkdots, it follows that there is some string y; (1
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<7 < m+1) such that M never consumes any of its m
inkdots on y; in comp(z). Let z' be the string obtained
from z by replacing y; (= y) by ¥". From comp(z) and the
fact that y and y' are M-equivalent, we can easily con-
struct a computation path of Af on z’ in which M never
reaches an accepting state or M enters an accepting
state only after using more than L(/(»)) stack symbols
in some counters. Thus, z'is never accepted by M. This
is a contradiction, because )’ never contains the seg-
ment %, and so z'is in 7(m+1). O
From Theorem 3.1, we have:
Corollary 3.2: Foreachx € {strong, weak}, each [>
1, each m = 0, and any function L(#) such that Z(r) >
log n and log (1) = o(log »n),
x2UCA™(l, L(n)) ¢ x-2UCA™(, L(n)).

4, Conclusion

We have investigated the accepting power of sub-
linear space-bounded multi-inkdot 2-way amca’s with
only universal states. Our main result is that for each m
>0 and any function Z(x) such that log Z.(r) = o(log »),

strong-2UCA™(1, log n)
— U1 <1<aweak-2UCA™(l, L(n)# ¢.

It is shown that for each m > 1, eachx € {weak,
strong}, and any function log logn < L(n) = o(log ),

x2DTM™(L(#)) = x-2DTM(L(»)) and
strong-2ATM'(log log 7)
— weak2ATM (o(log n))+ ¢,
in Refs. 4) and 7) respectively. But unfortunately, it is
unknown whether foreachm > 1,
strong-2ATM™ (log log 7)
— weak-2ATM™(o(log n))# ¢ .

Finally, we conclude this paper by giving two open
problems relating this research:

(1) For each m 2 1, each / 2 1, each x € {weak,
strong}, and any function log n < I{n) such that
log Z(n) = o(log n),

» x-2DCA"(l, L(n)) = x-2DCA’(, L(n))? and
* Ur<1<x-2DCA™(, L(n))
= Uj<ox-2DCA’(, L())?

(2) For each m > 0 and any function 7(») such that

log L(n) = o(log n),
strong-2ACA™(1, log n)
— Uy <rwoweak2ACA™(I, L(n))+ ¢?
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