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Abstract

We investigate the accepting power of one-way self-verifying nondeterministic Turing machines with
sublinear space. A self-verifying nondeterministic Turing machine has four types of states: working,
accepting, rejecting, and neutral (“I don't know™) ones. There is no possible move from any rejecting,
accepting and neutral states. The machine is not allowed to make mistakes. We show that there exists a
language accepted by a log 7 space-bounded one-way self-verifying nondeterministic Turing machine,
but not accepted by any o(n) space-bounded deterministic Turing machine, and also show that there exists
a language accepted by a log » space-bounded one-way nondeterministic Turing machine, but not
accepted by any o(n) space-bounded self-verifying nondeterministic Turing machine.
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1. Introduction and Preliminaries

The comparative study of the computational pow-
ers of nondeterministic and deterministic computations
is one of the central tasks of complexity theory. Some
of recent researches have focused on self-verifying
nondeterminism for restricted computational models.
For example, several properties of self-verifying
nondeterministic multi-head and multi-counter finite
automata have been explicated in Refs (1 — (4. But
there are few investigations about self-verifying
nondeterminism for more general computational mod-
els, such as Turing machines and pushdown automata,
as far as we know.

On the other hand, Inoue et al.” and Xu et al® have
investigated the accepting powers of one-way altemat-
ing Turing machines and pushdown automata with
sublinear space, respectively.

In this paper, from our theoretical interests, we will
investigate a few fundamental properties of one-way
self-verifying nondeterministic Turing machines with
sublinear space. We show that (1) there exists a lan-
guage accepted by a log n space-bounded self-

verifying nondeterministic Turing machine, but not
accepted by any o(#) space-bounded deterministic one,
and (2) there exists a language accepted by a log »
space-bounded nondeterministic Turing machine, but
not accepted by any o(n) space-bounded self-verifying
nondeterministic one. Throughout this paper, we as-
sume that all logarithms are base 2.

We assume that our Turing machine A has a
read-only input tape delimited by the left end-marker
“¢” and the right end-marker “$”, and a semi-infinite
read-write work tape. We also assume, without loss of
generality, that A can enter an accepting state only
when falling off §.

An instantaneous description (ID) of M is of the
form (w, i, (g, «, 7). The first and second components
w and i represent the input string and the input head
position, respectively. From now on, we note that0 =
i = W2, where for any string v, [v| denotes the
length of v. “07, “1”, “/wi+1” and “wH2” represent the
positions of the left end-marker ¢, the leftmost symbol
of w, the right end-marker $, and the immediate right to
$, respectively. The third component (g, «, j) is a
storage state which represents a combination of the
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state of the finite control, non-blank contents of the
work-tape, and the work-tape head position.

We write [ + 3, 'and say ["is a successor of I if an
ID 7' follows from an ID 7 in one step of M, according
to its transition rules. The reflexive transitive closure of
+ isdenoted by + *.

A computation path of M on input w is a sequence
[0 = M]1 [l VR M[n (I’l>0), where]0=(w, O, (qO,
A, 1)) is the initial ID, where g, is the initial state and
A denotes the empty string,

An accepting computation path of M on input w is a
computation path of A/ on w which ends with an ID 7,, »
=0, relating to an accepting state. We say that M accepts
w if there is an accepting computation path of A/ on input
w. We denote by Z(M) the set of all inputs accepted by M.

Let S(n) be a function. A computation path of M (on
some input) is S(») space-bounded if all ID’s of the path
use at most S(m) work tapecells. M is S)
space-bounded if for any input w of length »n, n=1, any
computation path of A/ on w is S(7) space-bounded.

We denote by 1InTm’s and 1dTm’s one-way
nondeterministic and deterministic Turing machines,
respectively. The states of these Turing machines are
considered to be divided into three disjoint sets of
working, accepting and rejecting states. No action is
impossible from any rejecting or accepting states.

On the other hand, a one-way self-verifying
nondeterministic Turing machine, denoted by 1svnTm,
M has four types of states; working, accepting,
rejecting, and neutral (“T don't know”) ones. There is no
possible move from rejecting, accepting and neutral
states. M is not allowed to make mistakes. If there is a
computation of A/ on an input w finishing in an
accepting (resp., a rejecting) state, then w must be (resp.,
not be) in L(M). For every input w, there is at least one
computation of A that finishes either in an accepting
state (if w € L(M)) or in a rejecting state (if w
¢ L(M))

For each x € {n, d, svn}, we denote by
1XTm(S(r)) a S() space-bounded 1xTm. Furthermore,
foreach X € {N, D, SVN}, 1IXTM(S(»)) denotes the
class of sets accepted by the corresponding Turing
machines.

2. Results
We first show the following result;

Theorem 2.1:
ISVNTM(logn) — 1DTM(o(n)) = ¢.
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Proof: Let

Li={w € {0,1}7|(w|isodd) &
(the center symbol in w is ‘1”)}.

Then, it is sufficient to show that

(1)L, € 1SVNTM(log ») and

(2)L; ¢ 1DTM(o(n)).

Proof of (1): The language L, is accepted by a
1svnTm(log ») M operating as follows. Let H be the
input head of M. M has two tracks #, % on its work
tape.

Suppose that an input w € {0, 1}" of odd length
is presented to M (Input strings of even length can be
easily rejected by M).

First, M moves its input head A right while
maintaining in one track # on the work-tape the
distance d/ of H from the left end-marker ¢ in binary,
until A/ nondeterministically guesses that A reaches the
center symbol s, of w.

Then, M stores s, read by H in its finite
control.(Note that at this time, d/ is the distance of s,
from ¢).

After that, A moves H right while measuring and
storing in another track #, on the work-tape the distance
dr of H from the position of s, until  reaches the right
end-marker $.

Finally, M enters
( i )an accepting state if d/ = drand s..is 1,

(ii ) arejecting state if &/ = dr and s.. is ‘0’, and
(iii) a neutral state if dl#dr.

It is obvious that A can do the actions above
operating in one-way and using at most log »
work-tape cells.

Proof of (2): Suppose that there is a 1dTm(S(n)) M
which accepts L, where S() = o(n). For each n=1, let

V)= {0'w0PlwE{0,1Y" &1 = p = 2n—1}.

We consider the computation of M on the string in /().
For each x = 0"w0” in /{#), let s(x) be the storage state
of M just after the input head H of M reads through the
initial segment 0"w of length 2x. Then, the following
proposition must hold:

Proposition 2.2: For any two different strings x and x'
in Mn) whose initial segments of length 2n are
different, s(x)#s(x").

[Proof: Suppose to the contrary that
(1)x=0"w0"=0"w,1w,0”and
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x'=0W07=0"w"0w,'07

in K(n), where wy|=w"|=1(0 = [ = n—1)and

p=n+l — |wy,and
(ii) @) =s(x").
Clearly, x € L (note that |0"wy| = w,0f|=n+1), and
so x is accepted by M. It follows that x’ must be also
accepted by M, since s(x) = s(x) and the suffix 07 of x’
is the same as the one of x. But x'is not in Z;. The
proposition follows from this contradiction. O

Proof (continued): Let ) be the length of each
element in M(n). Then, i(n) = O(n). Again, let C(n)
denote the set of all possible storage states of A/ when
M in the computation uses at most S(/»)) work-tape
cells,, and let e(7) be the number of elements of C(7).
Then, e(n) < SUn)K™, where ¢ and k are the
numbers of states of the finite control and work-tape
symbols of A On the other hand, let u(z) be the
number of strings in V() whose initial segments of
length 2 are different. Clearly, u(r2) = 2". Since S(») =
o(r) and I(n) = O(n), u(n) > e(n) for large », and so it
follows that for such », there must be two different
strings x and x’in ¥{(») such that

(1) the initial segments of length 2» of x and x' are

different, and

(1) s(x) = s(x").

This contradicts Proposition 2.2. This completes the
proof of (2). O

We also show the following theorem:

Theorem 2.3:

INTM(logn) — ISVNTM(o(n)) = ¢.
Proof: Let

Ly={w2w'|w,w € {0,1} &wFw' }.

Then, we will show that

(1)L, € INTM(log ») and

) L, € ISVNTM(o(n)).

Proof of (1): The language I, is accepted by a
InTm(log n) M which acts as follows. Suppose that
an input w2w’ where w, w' € {0, 1}", is presented to
M (Inputs of the form different from the above can be
easily rejected by M). M nondeterministically checks
that w(y)#w'(j)for some j, where for any strung v, (i)
denotes the i-th symbol (from the left) of v. That is, M
guesses somej (1= j =w]), stores; in its work tape in
binary, when it picks up the symbolw( ;),and compares
the symbolw( 7) with the symbol w'( ;) by using j stored
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(in binary) in the work tape. M enters an accepting state
only if w(j)#w{)).It is easily observed that log » space
is sufficient.

Proof of (2): Suppose to the contrary that there is a
1svnTm(S(r)) M which accepts L;, where S(n)=o(n).
Foreachn=1, let

Vin)={m2w|w € {0,1} &w|=n}.

For each x = w2w in W(n), there is at least one
computation path of M on x in which A enters a
rejecting state, because x is not in L, Fix such a
computation path of A on x, and denote it by c(x). Let
8(x) be the storage state of A just after the point where
in c(x) the input head has left the symbol “2” of x. Then,
the following proposition must hold:

Proposition 2.4: For any two different strings x, y in
V), s)#5().

[proof: Suppose to the contrary that x = w2w, y =
w2w',w # w', and s(x) = s(). Let z = w2w'. Then,
there is a computation path fo - pe s = 30 * * *+ m (G,
w2|, s(x)) of M on z. When, starting with ID (z, w2,
s(x)), M proceeds to read the segment w' of z, there
exists a sequence of steps of M in which A enters a
rejecting state, since s(x) = s(y). This means that z is
rejected by M. This contradicts the fact that zis in 7, =
(M) )

Proof (continued): Let C(n) = {s(x) | x € Vn)}.
Clearly, [/(r)| = 2", where for any set 7, |7| denotes the
number of elements of 7. |C(n) = O@**"™), where p is
some constant. Since S(n) = o(n), we have |V(n)| >
|C(n)| for large », and hence it follows that for such 7,
there must be two different strings x, y in /() such that
s(x) = s(»). This contradicts Proposition 2.4. This
completes the proof of (2). O

From Theorems 2.1 and 2.3, we can show:

Corollary 2.5: For any function S() such that log n
= Sm)=oln),

IDTM(S(®)) & 1ISVNTM(S(n)) & INTM(S(r)).
3. Conclusion
We have investigated the accepting power of

sublinear space-bounded 1svnTm’s. Our main result is
that
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INTM(logn) — 1SVNTM(o()) = ¢,and
ISVNTM(logn) — 1IDTM(o(n)) = ¢.

Let 1ATM(S(n)) be the class of sets accepted by
S(n) space-bounded one-way alternating Turing
machines. Inoue et al.5) implicitly showed that

1ATM(logn) — INTM(o(n)) = ¢.

From this result and Corollary 2.5, it follows that for
any function S(z) such thatlogn = S(n) = o(n),

IDTM(S@)) ¢ 1SVNTM(S(1))
¢ INTM(S() ¢ LATM(S()).

It is obvious, from the definition of self-verifying
nondeterminism, that the class of sets accepted by any
self-verifying nondeterministic machines is closed
under complementation. But the following problem
remains open:

+is ISVNTM(S(#)) is closed under intersection, union,
length-preserving homomorphism, concatenation
with regular set, and Kleene closure for any function
S(m) such thatlogn = S(n)=o(n)?
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