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Abstract

A 1-inkdot Turing machine is a slightly modified Turing machine model which has been introduced
in order to show a strong separation between deterministic and nondeterministic complexity classes. An
alternating Turing machine is a generalization of nondeterministic one, and is considered as a mechanism
to model parallel computations. This paper investigates closure property of sublogarithmic space-bounded
1-inkdot alternating Turing machines with only universal (existential) states, and shows, for example, that
for any function L(#n) such that L(n) > log log n and L(n) = o(log n), the class of sets accepted by weakly
(strongly) L(n) space-bounded 1-inkdot two-way alternating Turing machines with only universal (exis-
tential) states is not closed under complementation, length-preserving homomorphism, concatenation with

regular sets, and Kleene closure.
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1. Introduction and Notations

Alternating Turing machines (ATM's) were intro-
duced in Ref. 1) as a mechanism to model parallel
computations. We assume that the reader is familiar
with the basic concepts and terminology concerming
ATM's and computational complexity (If necessary,
see Refs. 1) —4)).

A two-way ATM (2ATM) we consider here has a
read-only input tape and a semi-infinite read-write
worktape. We denote a 2ATM with only universal
states (resp., existential states, i.e., a two-way nonde-
terministic Turing machine) by 2UTM (resp., 2NTM).
Further, we denote by 2DTM a two-way deterministic
Turing machine.

Ranjan et al. introduced in Ref. 2) a slightty modi-
fied Turing machine model, called a 7-inkdot Turing
machine, to show a strong separation of deterministic
and nondeterministic complexity classes. The 1-inkdot
Turing machine is a Turing machine with the addi-
tional power of marking at most 1 tape-cell in the input
tape (with an inkdot). This tape-cell is marked once and

for all (no erasing). The action of the machine depends
on the current states, the input and the worktape sym-
bols scanned currently, and the presence of the inkdot
on the currently scanned tape-cell. For each Xe{A, U,
N, D}, let 2XTM" denote a 1-inkdot 2XTM.

For each Xe{A, U, N, D} and any function L(r),
strong-2XTM(L(n)) and weak-2XTM(L(r)) denote the
classes of sets accepted by strongly and weakly L(r)
space-bounded 2XTM’s, respectively, and strong-
2XTM'(I(n)) and weak-2XTM (I(n)) denote those
accepted by strongly and weakly L(#) space-bounded
2XTM s, respectively.

Ranjan et al. showed in Ref. 2) that for any
two-way Turing machines with an inkdot, nondeter-
ministic and deterministic sublogarithmic space com-
plexity classes are not equal. After that, Geffert showed
in Ref. 5) that srrong-2NTM (log log 1) — strong-
2NTM(o(log #)) # ¢, where from now on logarithms
are base 2. In Ref. 6), Inoue et al. strengthened the
result above and showed that strong-2NTM ' (log log 1)
— weak-2NTM(o(log n)) #¢ . Inoue et al. also intro-
duced 2ATM  in Ref.7) as a generalization of 2NTM"
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and showed that for each X< {A, U} and each Ye {U,
N}, strong-2XTM (log log n) — weak-2XTM(o(log
n) #¢ and strong2ATM (log log n) — weak-
2YTM'(o(log 1)) # & . Furthermore, Yosihnaga et al.
introduced in Ref. 4) sublinear space-bounded 1-inkdot
two-way alternating multi-counter automata and
showed that the accepting power of these automata
with only existential states are incomparable with the
one of these automata with only universal states.

While several important properties of 1-inkdot
Turing machines with sublogarithmic space are
explicated up to now, there are little investiga-
tions relating to closure properties of these as we
know. So, from the theoretical interest, we inves-
tigate in the present paper closure properties of
2UTM" and 2NTM" which have sublogarithmic
space. We show, for example, that for each m€
{strong, weak}, each Xe{N, U} and any function log
logn < L(n) = o(log n), m-2XTM(L(n)) is not closed
under complementation, length-preserving homo-
morphism, concatenation with regular sets, and Kleene
closure.

2. Results

Throughout this paper, let L(#) be a function such
that L(n) > log log n and L(n) = o(log #), and let m be
an element of the set {strong, weak}.

For the standard Turing machines, in Ref. 3), it is
shown that weak-2XTM(L(n)) is not closed under
complementation, but it is unknown if strong-2XTM
(L(n)) is closed under the operation, for each X € {U,
N3}. Our corresponding result is shown as follows:

Theorem 2.1. m-2NTM (L(r)) and m-2UTM (L(n))
are not closed under complementation.

Proof. It is proved in Ref. 4) that the class of sets ac-
cepted by strongly (weakly) S(7) space-bounded 2-way
1-inkdot alternating multi-counter automata with only
existential (universal) states is not closed under com-
plementation, where S(#) is a function such that S(#) >
log # and log S(n) = o(log n). By using the same lan-
guages and idea as in Ref. 4), we can directly prove the
theorem. i

Remark: It is trivial that m-2NTM(L(n)) and m-
2NTM'(L(n)) (resp., m-2UTM(L(r)) and m-2UTM’
(L(n))) are closed under union (resp., intersection).
Thus, m-2ATM(I()) and m-2ATM (L(n)) are closed
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under union and intersection.

For the standard Turing machines, in Ref. 3), it is
shown that m-2NTM(L(#)) is closed under intersection,
but whether m-2UTM(L(r)) is closed under union or
not is an open problem. On the other hand, for the
1-inkdot Turing machines with L(n) space, different
situations occur. To get our results, we need the fol-
lowing key lemma:

Lemma 2.1. Let
A = {bin(D#bin(2)#.. . #bin(n)#

WEW| [CW5,C ... CW, COWy CW,sC.. . CW,y,
clOLe# |n228& we (0,1 &
VE(1<k<2)[r21&
VI(A<I<r)w, €{0,1}']] &
Vi(<i<2)[FH AL j<r)[w= W,y]]},

and let
B = {bin()#bin(2)#... #bin(n)#

WEW 1CW,C...CWy, CCWy CWy,C .. CW,,
e{0,Le,# |n22&we {0, &
VE(Q<k <[, 21&
VI(A<I<r)w, {0,111 &
Ji(A<i<2[Vj A< j<r)[w=w,]l},

where for each positive integer m > 1, bin(m) denotes
the string in {0, 1} that represents the integer m in
binary notation (with no leading zeros). Then,

(DA ¢ weak-2NTM'(L(r)) and

) B ¢ weak-2UTM (L(n)).

Proof. From the assertions in Refs. 8) and 9), we
straightforwardly get (1) and (2), respectively. a

Theorem 2.2. m-2NTM*(L(n)) and m-2UTM*(L(n))
are not closed under intersection and union, respec-
tively.

Proof. Let
A, = {bin(V#bin(2)#.. . #bin(n)#
WCEW,EW),C .. .C’er1 CCW, | CW,,C.. .C‘Wzr2
c{0Le# |n22&we {0,111 &
VE(A<k<[r, 21&
VI(<I<r)[w, € 0,1} ]1&
FA<j<n)w=w;l},
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A, = {bin(V#bin(2#... #bin(n)H
WCW([CW)5C ... CW;, CCWy CW)y C ... CW,y,
c{0,Le,#) [n22&we {0,/ &
VEQ<k<2)r 21&
VIA<I<r)w, {0,171 &

F A< jsn)lw=wy 1},

B, = {bin(\)#bin(2)#...# bin(n)#
WEW| [ CW|,C ... CWy, CCW CW ) C ... CW,,
e{0,Le,# [n22&we {0, &
VE(<k<2r, 21&
VI(A<I<r)w, €{0.1}']1 &
Vi< j<n)lw=w;l),

and

B, = {bin()# bin(2)#...#bin(n)#
WEW[[CW)5C ... CW), CCWy CW ) C . CW,,
c{0,Lc,#) [n22& we {0,/ &
VE(<k<r, 21&
VI(A<I<r)w, {0,111 &
Vi(l<j<r)w#w, ]}

It can be observed that
(i) both 4; and 4, are in strong-2NTM (L(n)),
(ii) both B, and B, are in strong-2UTM (I(n)),
(iil) 4, N A, = 4, and
(iv) BiUB,=B.
From these facts and Lemma 2.1, the present theorem
follows. ]

Theorems 2.1 and 2.2 above show closure proper-
ties of m2NTM'(I(n)) and m-2UTM'(L(r)) under
Boolean operations.

We will then discuss whether m-2NTM(L(r)) and
m-2XTM'(L(n)) are closed under the language opera-
tions: length-preserving homomorphism, concatenation
with regular set and Kleene closure.

The following theorem shows non-closure under
the language operations above for m-2NTM'(L(r)) :

Theorem 2.3. m-2NTM (I()) is not closed under
(1) length-preserving homomorphism,

(2) concatenation with regular sets, and

(3) Kleene closure.

Proof of (1): Let

A, ={bin(V)#bin(2Q)#.. #bin(n)#
WEW [ EW,C .. .CW,, COW, G WGy .. .C, Wy,
e{0,Lc,d #}" [n22&we {0,/ &
VEQ<k<L2)n 21&
VIALI<r)[w, e{0,1}']]1&
Ji(d<j<n)w=w;]&
FA<j<n)c;=d&w=w, &
Vp(A<p<n, p#jc,=cll}.
We can easily show that 45 e strong-2NTM (L(n)).
Further, A(43) = A4, where % is a length-preserving
homomorphism such that #(0) = 0, #(1) = 1, h(#) = #,
and 4(c) = M(d) = c. From these facts and Lemma 2.1,
(1) follows.
Proof of (2): Let
A, = {bin()#bin(2)#.. #bin(n)#

WCEWCW[,C.. .CVVlrI CCW, CW,C. . .C‘Wzr2
c{0,Lc,# | n=2&we {0, &
VE(1<k<2)r, 21&
VIA<I<r)[m, €0, &
FA<j<pw=w,]&w=w, }

and let As = {cw | w e {0, 1}"}". It can be easily seen
that
(i) A4 € strong-2NTM'(L(n)),
(ii) 45 is regular, and
(111) A4 A5 =A.
From these facts and Lemma 2.1, (2) follows.
Proof of (3): Let

Ag = {bin(V)#bin(Q)#... #bin(n)#
WEW||CW5C ... CW), CCW, 1 CWy)C ... CWy,
e{0,Lc,#) |n22&we {0,/ &
VE(1<k<2)[r21&
VI <I<n)[w, €{0,1}7]]}.
It is obvious that 4,UAs e strong-2NTM (L(rn)). We
can observe that 4 € strong-2DTM(L(n)). Suppose
that (4,U4s) is in weak-2NTM (L(r)). Then, (45U
As) NAg is also in weak-2NTM'(L(n)). This is a con-
tradiction, since (44 UAs) NAg=A. 0

In order to obtain our result that m-2UTM (L(n)) is
not closed under the language operations mentioned
above, we prepare the following lemma which is
shown in Ref. 7).
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Lemma 2.2, Let
T = {bin(D# bin(2)#... #bin(n)#
CW CW,C...CW,CCUCULC...CU .
ce{0,Lc,#} [ n22&r,r>1&
Vk(1<k<r)[w, {0,131 &
VIA<I<r)[u, e{0,M* &
Fi(A<i<r)[Vj(A<j<r)u, #w,]]}.

Then, 7 & weak-2UTM (L(1)).

Theorem 2.4. m-2UTM (L(#)) is not closed under
(1) length-preserving homomorphism,

(2) concatenation with regular sets, and

(3) Kleene closure.

Proof of (1): Let

T, = {bin (\)# bin (2)# ... # bin (n)#
CW{CW,C...CW, CC U CU,C;
€e{0,l,¢c,d, #} " |n=22&r,r'21&
Vk(<k<r)w, e{0,13M¢ g
ViQ<l<r)[u, e{o, &
Ji(<i<r)[e,=d &
ViA<j<nlu, #w,;]&
Vp(I<p<r,i#plc, =cll},

LG

and let /2 be the homomorphism defined in the proof of
Theorem 2.3. Then, we can show that #(77) = T. So,
from this fact and Lemma 2.2, (1) follows.

Proof of (2): Let

T, = {bin(Ly#bin(2)k. . #bin(n)#
CWCW,C...CW,CCU CULC.. .CU,,
e{0,Le#} [n22&rr21&
Vk(1<k<r)[w, € 0,1 &
VI(A<I<r)[u, {0,311 &

Vi (< j<n)u, #w, ]}
and let 4s be the language defined in the proof of
Theorem 2.3. Then, it is clear that
(i) T3 e strong- 2UTM (I(n)) and
(11) T 2A5 =T
(2) follows from these facts and Lemma 2.2.

Proof of (3): It is trivial that 7,UAs is in strong-
2UTM (L(n)). Let
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T, = {bin(L)# bin(2)#...#bin(n)#

CW\CW,C...CW,CCUCU,C.. .CU,,

e{0,,c,#}" |n>22& 1, r21&
VE(<k<r)[w, e{0,13le"]
VIQALI<r)[u, €{0,1}7]}.

Then, it is clearly shown that T; e strong-2UTM (L(n))

and (73 UA5)*nT3 = T. From these facts and Lemma
2.2, (3) follows. u]

3. Concluding Remarks

We investigate closure property of sublogarithmic
space-bounded 1-inkdot 2-way alternating Turing ma-
chines with only existential (universal) states.

Our main result is that m-2NTM'(L(r)) and
m-2UTM (L(r)) are not closed under intersection and
union, respectively, and both of them are not closed
under complementation, length-preserving homo-
morphism, concatenation with regular sets, and Kleene
closure.

For determinism, it is shown in Ref. 2) that

“m-2DTM (L(r)) = m-2DTM(L(n)y"
(For closure properties of m-2DTM(L(n)) (thus,
m-2DTM (L(n))), see Refs. 3), 4)).

Unfortunately, whether m-2ATM (L(n)) is closed
under the operations discussed in this paper except for
union and intersection is an open problem.

Inoue et al. introduced in Ref. 8) a multi-inkdot
Turing machines as an extension of the 1-inkdot Turing
machine. Some of the results obtained here will be able
to be extended to the multi-inkdot version. We will
give them in a forthcoming paper.
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