15

Polynomial Time-Bounded Alternating
Multi-Counter Automata

Kazue TAKESHIG@*I, Tsunehiro YOSHINI*AGA*Z ,
Jianliang XU™, and Katsushi INOUE™

Abstract

An alternating multi-counter automaton (amca) is a generalization of a nondeterministic multi-
counter automaton (nmca). The state set of an amca is partitioned into universal and existential states.
Greibach showed in Ref. 1) several important properties of nmca’s which have polynomial space and
operate in polynomial time. In this paper, from a theoretical interest, we investigate a few fundamental
properties of polynomial time-bounded amca’s. We show, for example, that (1) there is a language ac-
cepted by a two-way deterministic 1-counter automaton operating in linear time, but not accepted by any
one-way amca with only universal states operating in polynomial time, and (2) there is a language ac-
cepted by a two-way alternating 1-counter automaton with only universal (existential) states operating in
linear time, but not accepted by any one-way amca operating in real time.

Key Words: alternating multi-counter automata, polynomial time, linear time, real time,

computational complexity
1. Introduction and Preliminaries

A multi-counter automaton is a multi-pushdown
automaton with only one pushdown symbol Z. That is,
its pushdown tape is of the form Z'.

A two-way alternating multi-counter automaton M
is a generalization of a two-way nondeterministic
multi-counter automaton in the same sense as in Ref. 2).
That is, the state set of A is divided into two disjoint
sets, the set of universal states and the set of existential
states. Intuitively, in a universal state A/ splits into some
submachines which act in parallel, and in an existential
state M nondeterministically chooses one of possible
subsequent actions.

We assume that M has the left endmarker “¢” and
the right endmarker “$” on the input tape, and reads the
input tape in two directions (that is, right or left). We
also assume that in one step, M can increment or
decrement the contents (that is, the length) of the
counter by at most one.

For each £ > 1, we denote a two-way alternating
k-counter automaton by 2aca(k). An instantaneous de-
scription (ID) of 2aca(k) M s an element of

STXN XS,
where £ ($, ¢ ¢ X)isthe input alphabet of M, &
denotes the set of all non-negative integers, and
Su=0 % (&)
(where Q is the set of states). The first and second
components, w and i, of an ID
1=, (¢, (o, ...,)
represent the input string and the input head position,
respectively. The third component (g, (1, @a,..., @)
of 7 represents the state of the finite control, the con-
tents of the £ counters. / is said to be a wniversal (an
existential, an accepting) 1D if g is a universal (an
existential, an accepting) state. An element of Sy is
called a storage state of M. The initial ID of M on w
e X'is
]M (W) = (W,O, (qo > (2‘3 ﬂ’: e ;”)))a
L

k

" Yamaguchi Agricultural Cooperative Association Electronic Data Processing Center Co., Ltd.

Tokuyama College of Technology
* Ocean University of China

4 . . .
' Yamaguchi University

TBIL TR EH R I

16 Kazue TAKESHIGE, Tsunehiro YOSHINAGA, Jianliang XU, Katsushi INOUE

where g, is the initial state of A/ and A denotes the
empty string,

We write / |y, I'and say I'is asuccessor of I if an
D I follows from an ID 7 in one step, according to the
transition function of M.

A computation path of M on input w is a sequence

b b bl (n20),
where Io=1s(w).

A computation tree of M is a finite, nonempty la-
beled tree, and each node = of it is labeled with an ID,
Un).

An accepting computation tree of M on input w is a
computation tree of A/ whose oot is labeled with the
initial ID and whose leaves are all labeled with ID's
relating to accepting states. We say that M accepts w if
there is an accepting computation tree of M on w.

For each storage state s of Mand eachw € Y,
let an s-computation tree of M on w is a computation
tree of M whose root is labeled with the ID (w, 1,).
(That is, an s-computation tree of A/ on w is a computa-
tion tree which represents a computation of M on
w8 starting with the input head on the lefimost position
of w and with the storage state s.)

An s-accepting computation tree of M on w is an
s-computation tree of M on w whose leaves are all la-
beled with ID's according to accepting states.

For each k£ > 1, a one-way alternating k-counter
automaton (laca(k)) is a 2aca(k) which reads an input
tape from left to right only.

Foreach k> 1 and eachx € {1, 2}, we denote by
xuca(k) (resp., xnca(k)) an xaca(k) with only universal
states (resp., existential states, ie, an x-way
nondeterministic £-counter automaton), and by xdca(k)
an x-way deterministic A-counter automaton. (An
xdca(k) is regarded as an xuca(k) without splitting into
submachines or an xnca(k) whose nondeterministic
choice in each step in the computation is bounded by at
most one.)

Let 7(n) be any function. For eachx € {1,2} and
eachy € {a, u,n,d}, an xyca(k) M operates in time
T(n)ifforeachn >1 and for each input of length # ac-
cepted by M, there is an accepting computation tree of
M on the input such that the length of each computa-
tion path of the tree is at most 7(). M operates in real
(tesp., linear and polynomial) time if T{(n) = n+1 (tesp.,
cnand 77, where ¢ and r are some positive integers).

Foreachk>1,eachx € {1,2},eachY € {A,
U, N, D}, and each t € {redl, linear, polynomial},
xYCAC(k, ©) is the class of sets accepted by the corre-
sponding x-way k-counter automata operating in ¢ time.

No.28 (2004)

Greibach showed in Ref. 1) some important results
concerning the accepting powers of deterministic and
nondeterministic multi-counter automata operating in
polynomial time and having polynomial space. On the
other hand, there are little investigations about
properties of altemating multi-counter automata with
polynomial time and space as far as we know. From a
theoretical interest, we will investigate a few
fundamental properties of polynomial time-bounded
alternating multi-counter automata.

2. Results

Greibach in Ref .1) showed that
2DCA(1, linear)
— U <k< o INCA(k, pobynomial) # ¢

using the language:

Ln= {wew(cd"M|we{0, 1}*},
where for any string v, |v| and +* denote the length and
reversal of v, respectively. We can show the following
result which is considered as the counterpart of the
result above.
Theorem 2.1:

2DCA(, linear)

— U<k« ol UCA(K, polynomial) # ¢ .
Proof: Let
Lu= {wew' (cd"|w, w'e{0, 1}* & w'+wf}.
It is sufficient to show that
(i) Lue 2DCA(, linear) and
(i) Lu€ U< olUCA(K, polynomial).

The proof of (i): A 2dca(1) M can check that a string
starts with wew'e and w'+w” in time proportional to
]’ using its counter C.

To check deterministically that w'#w” , for example,
M stores Z in C when M picks up the symbol w(Z), and
compares with w((w|—! + 1) by using Z, where for
any string v, (i) denotes the i-th symbol (from the left)
of v. (Note that immediately after this comparison, the
input head A of M is on the symbol w'(jw|—/+ 1), and
7 has been consumed, so C is void.) If w(l) =w(w!—!
+ 1), then to compare w(/+1) with w{(iw1—1), M moves
H to the left by one cell with C keeping empty, and
picks up the symbol wi((w1—17). Then, M gets Z*' in C
while moving H to the right up to the first occurrence
of the symbol “c”. After that, M moves H to the left
endmaker ¢ and compares w(/+1) with w(jw|—1) by
using Z*' in C. In this manner, M can check if w'#u/
while moving A right and left.

Furthermore, M can verify that y ends in |w|
occurrences of substrings in ca™®; this takes the time

Polynomial Time-Bounded Alternating Multi-Counter Automata

proportional to y at worst.
Knowing now that

y=wew'ca”ca™ ...ca™,

M can check using C that m=n,=... =, in time O(wP).
Thus, the total time is linear in y. Therefore, Lu is in
2DCA(L, linear).
The proof of (ii }: Suppose to the contrary that there
exists a luca(k) M accepting Lu which operates in time
for some k> 1 and some constant »> 1. For each n>
1,1et
Vi) = {wew/ (e we {0,117},
For each x = wew/(cd™) in W(n), there is at least one
computation path of M on x in which M never enters an
accepting state, because x ¢ Lu. Fix such a computa-
tion path of M on x, and denote it by c¢(x). Let s(x) be
the storage state of M just after the point where in c(x)
the input head A of M has left the symbol “c” between
the substrings w and w* of x. Then, the following
proposition must hold:
Proposition 2.1: For any two different strings x, y in
n), s(x)#s(y).
[Proof: For otherwise, suppose that x = wew™(ca™)™, y
=w'ewcd”Y, w#w’, and s(x) = s@). Let z =
wewS(cd” Y (w#w’). Then, there is a computation
path (2) b ... bz wd, s(x)) of M on z. When,
starting with ID (z, jwc|, s(x)), M proceeds to read the
segment w(ca”*'$ of 28, there exists a sequence of
steps of M in which M never enters an accepting state,
since s(x) = s(y).This means that z is rejected by M.
This contradicts the fact that z is in Lz]
proof of (i) (continued): Clearly, [{n) = OQ2"),
where for any set S, |S| denotes the number of elements
of S. And R(n) = O("), where R(n) denotes the
number of possible storage states s(n)’s for x’s in n).
Therefore, we have |/{(#) > R(n) for large n, and so it
follows that for such a large », there must be two
different stings x, y in W(»n) such that s(x) = s(y). This
contradicts Proposition 2.1, and completes the proof of
(ii) of the theorem. O
From Greibach’s and our results, we have:
Corollary 2.1: For each X € {U,N, D}, eachr €
{linear, polynomial}, and each &> 1,
1XCA, 1) G 2XCA(k, o).

Now, we have shown two-way multi-counter automata
are more powerful than one-way ones in the case of de-
terminism, nondeterminism and alternation with only
universal states (except real time).

Next, we will investigate a relationship between the
accepting powers of full alternating one-way and two-

17

way multi-counter automata.

It is easily observed that the languages 7,, and 7,
above are in 1ACA(1, real). So, we need another
consideration. Let

E={xixt. #x |r>21&
I 20)Vi(l <i<Pxe {0, 1},
and / be a function such that for each xi#x.#.. . #x, € E,
h(xftxoft. . #x,) = sQo s, #s(x,), where

s .. aa)=a2Ma2™ . a2 'a;, where

a; € {0,1} foreach 1 <i <i
Now, we define the following language:

L={x#h(x#x,#...%#x,)
b(0(12|h(x1#xz#...#xk)|)|x0|)r |
x#x,#. . #x €k
&I j<nx, =x;1}.

which is a modification of the language defined in Refs.
3)—35).

Lemma 2.1: Let L be the language defined above.
Then,

(1) L € 2NCA(, linear),

(2) L € 2UCA(, linear), and

B)LE& Uich< ol ACA(K, real).

The proofs of (1) and (2): They can be shown using
the ideas and the techniques in Refs 1), 4), 6), 7). So,
the proofs are omitted here.

The proof of (3): Suppose that for some £ > 1, there
exists a laca(k) M which accepts L and operate in real
time. Foreachn> 1, let

V(n) ={x,#h(x#x,#...%x,)
bo(12" ™ yely2 |
Vi(0<i<2")[x, € {0,1}"]
&F(A<j<2N)x, =x,1}cL
and
W(n)={#h(x,#x,#..#x,)
b(0(12|h(x| #xzﬁ...#xzn)|)n)2n |
Vi(0 <i<2M)x, € {0,1}"]}.
Note that for each v € /{(n), there exists an accepting
computation tree of A on v which has the properties:
(1) for each computation path P from the root to a leaf,
the length of P is |¢v $ and P represents a
computation in which the input head moves one
cell to the right in each step, and thus

(ii) for each node = labeled with an ID which M enters
just after the input head has read the initial seg-

TBIL TR EH R I

18 Kazue TAKESHIGE, Tsunehiro YOSHINAGA, Jianliang XU, Katsushi INOUE

ment x, of v, the length of each counter in ¢(7) is
bounded by #, since M operates in real time and
we assume that M can enter an accepting state
only when falling off the right endmarker $.
For each storage state s of M and for each y in W(), let
M)
=1 if there exists an s-accepting computation tree of A/
on y such that for each computation path P from the
root to a leaf, the length of P is |¢y $| and P
represents a computation in which the input head
moves one cell to the right in each step,
=0 otherwise.
For any two strings y, z in W(x), we say that y and z are
Meequivalent if Ms) = Ms) for each storage state s =
@, (@ 0z, a))of Mwith0 < | a;|<n(1<i< k)
Clearly, M-equivalence is equivalence relation on
strings in #{(n), and there are at most

E(n) =27

M-equivalence classes, where p denotes the number of
states of the finite control of A We denote these
M-equivalence classes by Ci, C, .., Cygy
For each y in W(n), let

b)={ue{0,1}"|3i(A<i<2u=x]}.
Furthermore, for each > 1, let

Rn)={b() |y € W(n)}.
Then,

2" 2" 2" »
| R(n) _() j+(2J+...+£2nJ_2 1.

So, we have |R(n)| > E(n) for large . For such #, there
must be some Q, Q' (QF Q') in R(n) and some C; (1 <
i < E(n)) such that the following statement holds:
"There are two string y, ze W(n) such that
(1)by)=Q0#0'=bz)and
(ii)y,z e G (ie,yand z are M-equivalent)."

Because of (i), we can, without loss of generality,
assume that there is some word #< {0,1}" such that u €
b(y)—b(z). Clearly, it implies that y'=uy € L and z' =
w ¢ L.

Because of (ii), y' is accepted by M iff z' is
accepted by M, which is a contradiction. O
From Lemma 2.1, we have the following theorem and
corollary:

Theorem 2.2: For each X e {U, N},

2XCA(, linear)— U <4< o1 ACA(k, real) + ¢ .
Corollary 2.2: For each £ > 1 and each ¢ e {linear,
polynomial},

1ACA(k, real) & 2ACA(k,).

No.28 (2004)

3. Conclusions

In this paper, we presented a few results in the
accepting powers of altemating multi-counter automata
operating in polynomial time. The main results are that
for each X e{U, N},

2XCA(1, linear)— U <4< ol ACA(K, real)# ¢ and
2DCA(1, linear)
— U<k« SIUCAC(k, polynomial)# ¢ .

Finally, we conclude this paper by listing up
interesting open problems. For each k> 1, each X e {A,
U, N, D}, and each ¢ € {linear, polynomial},
(1)2DCA(1, linear)— U <1< lACA(K, real) # ¢,
(2) 2XCA(k+1, linear)—1XCA(k,) + ¢ ?,and
(3) are 2UCA(k, #) and 2NCA(%, £) incomparable?

References

1) Greibach, S.A.: Remarks on the complexity of nondeterministic
counter languages, Theoretical computer Science, Vol. 1, pp. 269
—288 (1976).

2) Chandra, AK,, Kozen, D.C., and Stockmeyer, L.J.: Alternation, J.
ACM, Vol. 28, PP. 114—133 (1981).

3) Chrobak, M.: Variations on the technique of Duri§ and Galil, J.

Computer and System Sciences, Vol. 30, PP. 77—85 (1985).

4) Chrobak, M.: Nondeterminism is essential for two-way counter
machines, in MFCS'84, 11th Symp., Lecture Notes in Computer
Science 176, Springer-Verlarg, PP. 240—244 (1984).

5) I3uri§, P. and Galil, Z.: Fooling a two way automata or one push-
down store is better than one counter for two way machines,
Theoretical Computer Science, Vol. 21, PP. 39—53 (1982).

6) Yoshinaga, T. and Inoue, K.: Two-way alternating counter auto-
mata with only universal states, Research Reports of the
Tokuyama College of Technology, No.26, PP.41—44 (2002).

7) Inoue, K, Tanaka, Y., Ito, A, and Wang, Y.: Self-verifying
nondeterministic and Las Vegas multihead finite automata,
IEICE Trans. Fundamentals, VolE84-A, PP. 1094 — 1101
(2001).

(Received September 3, 2004)

