コンテンツメニュー

Evidence-Based Model Selection―When and Why Linear Models Outperform Gradient Boosting Decisionー

Journal of Intelligence Science in Local Research Volume 2 Issue 1 Page 1-19
published_at 2025-10-31
エビデンスに基づくモデル選択ー線形モデルが勾配ブースティング決定木を上回る状況とその理由ー
[fulltext] 656 KB
Title
エビデンスに基づくモデル選択ー線形モデルが勾配ブースティング決定木を上回る状況とその理由ー
Evidence-Based Model Selection―When and Why Linear Models Outperform Gradient Boosting Decisionー
Abstract
Despite the widespread adoption of Gradient Boosting Decision Trees (GBDTs), practitioners lack systematic criteria for determining when linear models are more effective. This knowledge gap impacts model selection in applications where
computational efficiency, interpretability, and extrapolation capabilities are required. This study addresses this issue through five systematic experiments that isolate data characteristics: linearity dominance, feature interactions, extrapolation requirements, small-sample scenarios, and interpretability needs. Our multi-dimensional evaluation
framework integrates predictive performance with computational and interpretability costs, providing a comprehensive empirical comparison of linear regression and GBDTs. Linear models significantly outperformed GBDTs under four critical conditions.
Creators Shirahama Naruki
Affiliate Master Shimonoseki City University
[kakenhi]25501
Source Identifiers [EISSN] 2759-1158
Creator Keywords
機械学習 モデル選択 線形回帰 勾配ブースティング決定木 解釈可能性 外挿 計算効率 Machine Learning Model Selection Linear Regression Gradient Boosting Decision Trees Interpretability Extrapolation Computational Efficiency
Languages jpn
Resource Type journal article
Publishers Shimonoseki City University
Date Issued 2025-10-31
File Version Version of Record
Access Rights open access