Evidence-Based Model Selection―When and Why Linear Models Outperform Gradient Boosting Decisionー
Journal of Intelligence Science in Local Research Volume 2 Issue 1
Page 1-19
published_at 2025-10-31
Title
エビデンスに基づくモデル選択ー線形モデルが勾配ブースティング決定木を上回る状況とその理由ー
Evidence-Based Model Selection―When and Why Linear Models Outperform Gradient Boosting Decisionー
Abstract
Despite the widespread adoption of Gradient Boosting Decision Trees (GBDTs), practitioners lack systematic criteria for determining when linear models are more effective. This knowledge gap impacts model selection in applications where
computational efficiency, interpretability, and extrapolation capabilities are required. This study addresses this issue through five systematic experiments that isolate data characteristics: linearity dominance, feature interactions, extrapolation requirements, small-sample scenarios, and interpretability needs. Our multi-dimensional evaluation
framework integrates predictive performance with computational and interpretability costs, providing a comprehensive empirical comparison of linear regression and GBDTs. Linear models significantly outperformed GBDTs under four critical conditions.
computational efficiency, interpretability, and extrapolation capabilities are required. This study addresses this issue through five systematic experiments that isolate data characteristics: linearity dominance, feature interactions, extrapolation requirements, small-sample scenarios, and interpretability needs. Our multi-dimensional evaluation
framework integrates predictive performance with computational and interpretability costs, providing a comprehensive empirical comparison of linear regression and GBDTs. Linear models significantly outperformed GBDTs under four critical conditions.
Source Identifiers
[EISSN] 2759-1158
Creator Keywords
機械学習
モデル選択
線形回帰
勾配ブースティング決定木
解釈可能性
外挿
計算効率
Machine Learning
Model Selection
Linear Regression
Gradient Boosting Decision Trees
Interpretability
Extrapolation
Computational Efficiency
Languages
jpn
Resource Type
journal article
Publishers
Shimonoseki City University
Date Issued
2025-10-31
File Version
Version of Record
Access Rights
open access

