Note on recursive formulae for a special case

Yasuyoshi TSUTSUMI *

Abstract

We calculate the Lescop invariant of every Brieskorn-Hamm manifold by Lescop’s surgery
formulae. By the result, we give recursive formulae for a special case.

1 Introduction

In 1985, A. Casson [1] defined an invariant for oriented integral homology 3-spheres from repre-
sentations of their fundamental groups into SU(2). K. Walker [15] extended it to oriented ratio-
nal homology 3-spheres. C. Lescop [5] gave a formula to calculate the invariant from framed link
presentations, and found that the invariant can be extended to all oriented closed 3-manifolds.
We call the last invariant the Lescop invariant, and denote it by A\(M) for an oriented closed
3-manifold M.

Let a1,...,a, be positive integers where n > 3, and B = (b;;) an (n — 2) X n matrix over the
complex number field such that each maximal minor is non-zero (see [3]). Then the variety

n
Vi(at,...,an) =< (21,...,2,) € C" Zbijz}” =0@Gi=1,...,n—2)
j=1

is a complex surface which is non-singular except at the origin, and we get
Y(ay,...,an) = Vg(ay,...,a,) N S* 1

where S?"~1 is the boundary of a sufficiently large ball in C" including the origin. We call
the 3-manifold X(aq,...,a,) the Brieskorn-Hamm manifold. We note that X(a1,...,a,) is a
Seifert fibered 3-manifold, the diffeo-type and the orientation of X(ay,...,a,) are independent
from choices of B and the order of indices of aq,...,a,, and X(aq,...,a,) with n > 3 is an
ap-fold cyclic branched covering of ¥(ay,...,a,_1) whose branch set is determined by z, = 0
(In particular, if n = 3, then the set is an (a1,as)-torus knot/link in S3) (see [10] and [11]).
Since (a1, as,1) = S and Y(a1,...,a, 1,1) = X(ay,...,a, 1) when n > 4, we may assume
a; > 2 for all i =1,...,n. Throughout this paper, we assume it. We set

AMai,...,an) = X(Z(ay,...,a,)).

We calculate the Lescop invariant of every Brieskorn-Hamm manifold by Lescop’s surgery formu-
lae in Theorem 3.2. By the result, we give recursive formulae for a special case as the following
theorem.

Theorem 4.1. We suppose the conditions (1) as in Lemma 2.2 and Theorem 3.2. We set

n
b=]]b:
i=1
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(a) If (a1,...,an) = (dby,dbs, bs, ..., by,) satisfies that by, ..., b, are pairwise coprime integers,
and ged(d, b;) =1 for j =3,...,n, then we have the following:

(i) We set by = b by = by + kbi > 0 for an integer k, and al = db. Then we have

by’
Ady,az, ... an) — Mai,az,...,ay)
A o) "o
1 1 2
SR - (2 2N 2
24 <b2> <b2> b -~
j=3 J
(ii) We set by = bﬂ’ by = by + dkbs > 0 for an integer k, and ay = bs. Then we have
3
Aay,ag,al, a4, ...,a,)  Aai,az,a3,a4,...,a,)
bld—l - bd_l
3 3
dk B\ 5\ (B dRd-1) "1
3 3 3 3\¢ — 2
— o (B) () T 225 o
24 <b1b2> <b1> <b2> R ;@?

(b) If (a1,...,a,) = (2b1,2bg,2b3,by,...,by,) satisfies that by,..., b, are pairwise coprime in-
tegers, and ged(2,b5) =1 for j =4,...,n, then we have the following:

(i) We set by = b by = by + kb > 0 for an integer k, and al =2b|. Then we have

by’
A(al, a2, an)  Aar,a,...,a,)
v} b1
kb3 by by v "1
=——2L 2= - [~ - +208 | n—-2-) =
126252 <b2> <b3 bty ! = b

- b -
(i) We set by = —, by = by + 2kby > 0 for an integer k, and aly = bl;. Then we have

by
Aay,a2,a3,d),as,...,a,)  May,az,a3,a4,05,...,a0,)
B3 - b3
f 1
N N2 N2 N2
kb3 by by by 60 "1
. o[ 22) () () - W (n—2-5" =
6b2b3b3 <b1> (bz bs bab)y T ]:Z5 b;

In Section 2, we introduce a surgery description of the Brieskorn-Hamm manifolds. In Section
3, we compute the Lescop invariant of every Brieskorn-Hamm manifold. In Section 4, we show
recursive formulae for a special case which is an extension of a result due to S. Fukuhara, Y.
Matsumoto and K. Sakamoto [2, Theorem 4], and independently, W. Neumann and J. Wahl [9,
Remark 1.15].

2 Surgery description and the first homology of the Brieskorn-Hamm manifold

In this section, we give a surgery description of the Brieskorn-Hamm manifolds. We denote an
oriented Seifert fibered 3-manifold with m-singular fibers whose base space is an oriented closed
surface with genus g by

(g | h; (alaﬁl)a T (O‘maﬁm))
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Note on recursive formulae for a special case (1)

where h is the obstruction class, ged(a;, ;) =1 (i = 1,...,m), and «; # 0 and (o, 5;) are the
multiplicity and the index of the i-th singular fiber, respectively.

We set 0
kti Ok lcmkak .
5= A = (= 1,...,n), (2.1)
CMy2£ja, lemyg ag
and
1 (n =2 ar ¢
_1(s = _ . 2.2
9 2 + lcmkak ;8] ( )

where lem denotes the least common multiple. W. Neumann and F. Raymond [8] showed the
following;:

Lemma 2.1. The Brieskorn-Hamm manifold (a4, ..., a,) is presented by

(g]0;81(t1,¢1)y--8n(tn,cn))

where s; and t; (j = 1,...,n) are in (2.1), s;(t;,c;) implies that (Z;,c;) is repeated s; times, ¢;

satisfies the equation
n

S S, = i (2.3)

tj J (lkaak)2,

J=1

and ¢ is in (2.2).

KS1+- “+8n

Figure 1: Surgery description of X(aq,...,ay,)

The Brieskorn-Hamm manifold ¥(a,...,a,) has a surgery description By U -+ U By U Ko U
KU UK, 4..45, as in Figure 1 (see [6]). We restrict to the case g = 0 and g = 1 (see Lemma
3.1 and Teorem 3.2). By [7] and [13], we have the following:
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Lemma 2.2. (1) g =0 if and only if one of the following (a) and (b) holds:
(a) By a suitable permutation of (ay,...,a,), we have that a1/d,as/d, as,...,a, are
pairwise coprime for d = ged(ai,a2) > 1, and ged(d, a;) =1 for j =3,...,n.
(b) By a suitable permutation of (ay, ..., a,), we have that 2 = ged(aq, a2, a3), a1/2,a2/2,
az/2,ay,...,a, are pairwise coprime, and ged(2,a;) =1 for j =4,...,n.

(2) g =1 if and only if one of the following (a), (b), (c) and (d) holds:

(a) By a suitable permutation of (ai,...,a,), we have that a1/2,a2/3 and a3/6 are
integers, a1/2,a2/3,a3/6, a4, ...,a, are pairwise coprime, 6 divides neither a; nor as,
and ged(6,a;) =1 for j =4,...,n.

(b) By a suitable permutation of (ai,...,ay,), we have that a1/2,a2/4 and a3/4 are

integers, a1/2,a2/4,a3/4,a4,...,a, are pairwise coprime, 4 does not divide a;, and
ged(2,a5) =1 for j =4,...,n.

(c) By a suitable permutation of (ai,...,a,), we have that a;/3,a2/3 and a3/3 are
integers, a1/3,a2/3,a3/3, a4, ..., a, are pairwise coprime, and ged(3,a;) =1 for j =
4,...,n.

(d) By a suitable permutation of (ay,...,a,), we have that a/2,a3/2,a3/2 and a4/2 are
integers, a1/2,a2/2,a3/2,a4/2,as, . ..,a, are pairwise coprime, and gcd(2,a;) = 1 for
j=25,...,n.

3 Lescop’s surgery formulae

We compute the Lescop invariant of ¥(aq,...,a,) by Lescop’s surgery formulae.
Let p be a non-zero integer, and ¢ an integer. For a real number z, we denote by
_ 0 (z €Z),
(=) _{ r—[2] -5 (z€R\Z),

where [] is the gaussian symbol. Then the Dedekind sum s(g, p) is defined by

=3 () (2):

For a real number y, we denote by

& (y#£0),
E(y)_{ 4 (y=0).

Lemma 3.1. (C. Lescop [5, Proposition 6.1.1]) Let M = (g | h; (a1,61),- .-, (m, Bm)) be an
m
oriented Seifert fibered 3-manifold as in Section 2, and e = —h + Z & the Seifert invariant of
i=1 "'
M.

(1) If g = 0, then we have

A1) =1_Ia{% (2—m+zai> +%—§—§;s<ﬁi,ai>}.
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Note on recursive formulae for a special case (1)

(2) If g = 1, then we have
m
e) H Q.
i=1

(3) If g > 2, then we have
A(M) =0.

By Lemma 2.2 and Lemma 3.1, we have the following;:

n
Theorem 3.2. We suppose the same settings as in Section 2. We set b = Hbi’ and ¢; (5 =

i=1
1,---,n) satisfies the equation (2.3) in Lemma 2.1.

(1) The case g = 0.

(a) If (a1,...,an) = (dby,dby,bs, ..., b,) satisfies that by, ..

., by are pairwise coprime
integers, and ged(d,b;) =1 for j = 3,...,n, then we have

A(dbl,de,bg,...,bn):< ) — | 2d — nd—|—z—2 — |+ — =

(b) If (ay,...,an) = (2b1,2bg,2b3,by, ..., by,) satisfies that by, ..

., b, are pairwise coprime
integers, and ged(2,b;) =1 for j = 4,...,n, then we have

3 3 n
2 4 1
)\(2b1,2b2,2b3,b4,...,bn) = 67 i 8 —4n + 2—2 _2 -

6b

_l’_
b12b9%b3? | 24

e

94]
3

—223 Cj, b; 42 s(cj, b;

(2) The case g = 1.

(a) If (a1, ...,an) = (2b1,3bo, 6b3, by, ..., by) satisfies that by, ..., b, are pairwise coprime
integers, 6 divides neither a; nor ag, and ged(6,b;) =1 for j =4,...,n, then we have

b6

(201, 3bo, 6b3, by, ... by) = ——————.
( 1 2 3y V4 n) 613b24b35

(b) If (ay,...,a,) = (2b1,4by,4b3, by, ..., b,) satisfies that by, ..

., b, are pairwise coprime
integers, 4 does not divide a1, and ged(2,b;) = 1 for j = 4,

., M, then we have
b8

A(2b1, 4by, dbg, by, - by) = ——o
( 1 2 35 04 n) bl4b26b36
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(c) If (a1,...,an) = (3b1,3ba,3b3, by, ..., by,) satisfies that by, ..., b, are pairwise coprime
integers, and ged(3,b;) =1 for j = 4,...,n, then we have

b9

A(3by, 3bg, 3bs, bas ... b)) = ———
( 1 2 35 U4 n) blﬁbgﬁbgﬁ

(d) If (a1,...,an) = (2b1,2by,2b3,2by, b5, . .., by) satisfies that by,...,b, are pairwise co-
prime integers, and ged(2,b;) = 1 for j =5,...,n, then we have

b8

A(2by, 2by, 2bs, 2b4, by, - by) = ———
(2b1,2b,2b3, 2by, bs ) b1 3by bt

(3) The case g > 2.
/\(al, cee ,an) = 0.

We remark that Theorem 3.2 holds even if a; = 1 is included.
4 Recursive formulae for a special case
In this section, we give recursive formulae for a special case.

Theorem 4.1. We suppose the conditions (1) as in Lemma 2.2 and Theorem 3.2. We set
n

b=]]b:
i=1

(a) If (a1,...,an) = (dby,dby, bs, ..., by,) satisfies that by, ..., b, are pairwise coprime integers,
and ged(d,bj) =1 for j =3,...,n, then we have the following:

- b -
(i) We set by = —, b} = by + kb > 0 for an integer k, and a} = db}. Then we have

b1
Aday,ag, ... an) — Nay,az,...,a,)
k(o AN "o
1 1 72
S (] 1 () va2(n-2-5"=
24 <b2> <b2> T L2
j:3 J
b N
ii) We set b3 = —, by = b3 + dkbz > 0 for an integer k, and aj = b;. Then we have
be U3 3 3
3
A(alaa%ag’,aaﬁla"'aan) )\((11,(12,@3,@4,...,an)
bld—l - bd_l
3 3
dk B\ 5\ (B dRd—-1) "1
3 3 3 3(d — 72
S Lo (2) () B 225 o
(8 - () - () - B (o

(b) If (a1,...,a,) = (2b1,2bo,2b3,by,...,by,) satisfies that by,...,b, are pairwise coprime in-
tegers, and ged(2,b;) =1 for j = 4,...,n, then we have the following:
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b N
(i) We set by = b by = by + kb; > 0 for an integer k, and a} = 2b]. Then we have

A(al, a2, an)  Aar,as,. .., a,)
o by
~ ~ N\ 2 2
kb3 b1 by b1 72 ~ 1
SR W Y v (n-2-S"=
120252 <b2> <b3 T bt vl
(ii) We set by = bﬁ’ |, = by + 2kby > 0 for an integer k, and ayy = bjy. Then we have
4
A(al,GQ,a:},ai}, as, ... aan) )\(ala a2, 03,04, 05, . - . aan)
B3 o b3
4 4
kb3 ANNANNAYRE "1
4 4 4 4 004
— i J () () (2 v (n—2-S5 =
620202 <b1> <b2> <b3> batl, ;5 b7

The case d = 1 of Theorem 4.1 (a) (i) corresponds to a theorem due to S. Fukuhara, Y. Mat-
sumoto and K. Sakamoto [2]. We remark that the righthand side of (a) (i) is independent from
b1, and the author [12] and Yukihiro Tsutsumi [14] showed this kind formulae for branched cyclic
coverings of S3 over some satellite knots. We need the following lemmas to prove Theorem 4.1.

Lemma 4.2. Let p be a positive integer, and ¢ an integer which is coprime to p. Then we have:
(1) s(g+np,p) = s(qg,p) (n € Z), s(—q,p) = —s(q,p), s(¢,p) = s(q,p) where gg =1 (modp).

P’ +q¢>+1-3pg

0).

(2) ([4]) s(q,p) + s(p,q) =

Lemma 4.3. We suppose the conditions as in Theorem 4.1. We set b;- = b; for the rest indices

n
in every case of Theorem 4.1, and V' = Hb; Let ¢; (j = 1,...,n) be the same as in (2.3)

=1
corresponding to (ai,...,an), and ¢ (j = 1,...,n) the same as ¢; in (2.3) corresponding to

!/ !/ !/ :
(a},a9,...,an), (a1,a2,a%,a4,...,a ) or (al,a2,a3,a4,a5,...,an), respectively.

(a) Suppose the condition as in Theorem 4.1 (a). Then we have

b

b—lcl + —CQ + dz b = 1

and (4.1)
b’

b,cl+ Cz‘i‘del j = 1.

j=3 J

(i) Suppose the condition as in Theorem 4.1 (a) (i). Then we have

by =— = v Hbi, 3101 =1 (modby), 310,1 =1 (modby),
i=2
and

cj=c; (modbj) (j=2,...,n).
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(ii) Suppose the condition as in Theorem 4.1 (a) (ii). Then we have

- b

- 7
by by 1<i<n
i3
and

cj=c; (modbj) (j=1,2,4,...,n).

(b) Suppose the condition as in Theorem 4.1 (b). Then we have

b b b " b

—c1] + —02+—63+2Z—Cj =1
b by ° ' b b,

and

b/ b/ b/ n /

j=4 J
(i) Suppose the condition as in Theorem 4.1 (b) (i). Then we have
~ bV £

b1 =7 =3 = Hbz, /b\lcl =1 (mOdbl)a Elc’l =1 (mOdbll)a

by U

i=2
and
cj=c¢; (modbj) (j=2,...,n).

(ii) Suppose the condition as in Theorem 4.1 (b) (ii). Then we have
~ b v

bi=3 == [T 5, 2bscs=1 (modby), 2bscy=1 (modb}),
o I<icn
i£4

and
cj=¢; (modbj) (j=1,2,3,5,...,n).

Proof. (a) By Lemma 2.1, we have the result.

= J] b dbses=1 (modbs), dbscs=1 (modb),

(4.2)

(i) Since b/bj and '/} are divisible by b; and b; for i # j, respectively, and (4.1), we have the

result.
(ii) In the similar way as (i), we have the result.

(b) By Lemma 2.1, we have the result.

(i) Since b/b; and b'/b’; are divisible by b; and b; for i # j, respectively, and (4.2), we have the

result.

(ii) In the similar way as (i), we have the result.

Lemma 4.4. We suppose the conditions as in Lemma 4.3.
(a) (i) Suppose the condition as in Lemma 4.3 (a) (i). Then we have

k

3(0'17511) —s(c1,b1) = —m

(Ef—blb’lwtl),

and
s(cj,bj) = s(c,b5) (5 =2,...,n).

96

0


charv
長方形


Note on recursive formulae for a special case (1)

(ii) Suppose the condition as in Lemma 4.3 (a) (ii). Then we have

s(ch, b5) — s(cs, b3) = (dzj)\% — b3b + 1) ,

 12b3t}
and

s(cj,bj) = s(c;,b;) (1=1,2,4,...,n).

(b) (i) Suppose the condition as in Lemma 4.3 (b) (i). Then we have

k

s(cy,bh) —s(er,br) = A

@ﬁ—h%+l)

and
s(cj bj) = s(cj,b5) (5 =2,...,n).
(ii) Suppose the condition as in Lemma 4.3 (b) (ii). Then we have

k
12b41),

s(chsbl) = (s, by) = (482 — batfy + 1) ,

and

s(cj, bj) = s(c},b}) (1 =1,2,3,5,...,n).

Proof. (a) (i) By Lemma 4.2 (1), Lemma 4.2 (2) and Lemma 4.3 (a) (i), we have

S(Cl,bl) = 8(?)\1,()1)
72 2 7
1— ~
_ bl +bl + A 3blbl _ S(bl’bl)’
12b1 b,
s(ch,b) = s (bi,0})

V) 2 N
b2+ b2+ 1 — 3byb B
_ A UL s(by + Kby, by)

120,y
b2+ 02 41— 3by b, ~
= = = 8(b1,b1),
120, b,

and

OF+ b2 +1—3bib B2+ b} +1—3biby
12b’131 12b,b,

R 11 ,
- — = b 1 — — T b—b
121)1{(1+ ><b’1 b1>+(1 1)}

k 31 ~ ~
- — = — T b ]_ b
12()1{ blb’1<1+ >+ 1}

S(Cllabll) - S(Clabl) =

By Lemma 4.3 (a) (i), we have s(c;, b;j) = s(cj, b;) for j # 1.
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(ii) By Lemma 4.2 (1), Lemma 4.2 (2) and Lemma 4.3 (a) (ii), we have

s(c3,b3) = s (dg?,,ba)
272 2 ™
1— ~
_ d b3 +b3 + _ 3db3bg _ S(bg’db?)),
12dbsbs
s(cy,by) = s (d?b},,bg)

272 | p12 TN
1 — ~ o~
_ d b3 + b3 + 3db3b3 _ 8(b3 + dkb3’ db3)

12db},bs
d2b2 + b2 + 1 — 3dbsb} -
= = — S(bg, dbg),
12db,bs

and

d?03 + U +1 — 3dbsby  d”b3 + b3 + 1 — 3dbsbs
12db,bs 12dbsbs

1 11
= — (i +1 (———>+ b’—b}
12db3{( i >b§, by ) T~ 0)

. k 33 279 ~
= o {_bgbg (d b3+1) +b3}

k o

s(ch, b3) — s(cs,bs) =

By Lemma 4.3 (a) (ii), we have s(c;, bj) = s(c];, b;) for j # 3.

(b) By the similar way as (a), we have the result.

Proof of Theorem 4.1. (a) (i) We set

1 1 " d 1 1
A'=2d—nd+— + — + —, B':——s(c',b')——s(c',b')—
b/12 b22 ]:ZabJQ 9 1>Y1 2 25 Y2

s (cf,0)
j=3

n

2 n 2
1 d 1 d
A=2d—nd+ E ?-i- E ?, ande—E E S(Cjabj)_g E S(Cj,bj).
=1 =3 =1 =3

Then we have

- kb kb? "1
B A —bA={ ——L 4+ L _qkp? [n—2- =
blb,l b22 7j=3 b.72

By Lemma 4.3 (a) (i) and Lemma 4.4 (a) (i), we have

24B' —24B = —12s(c},b}) + 12s(c1, b1)
k 72 /
- B — byb 1).
b1t ( 1=+
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By Theorem 3.2 (1) (a), we have
Aal,ag,...,a,) — Nay,az,...,a,)

— ) (dbl’,de,bg, L ,bn> — A(dbr, dbs, by . .., by)
~ d—1 ~
b by b, by 1 1 b\ /b 11
- A BT I L 2 A4— —-4B
(bgb2> ( 22" o 8 biby 2 T 8"

~ d—1 ~
1 ~
= (bl> (b’lblA’ SR Y 24B>

24 \ by b b
E(a\ b\’ "
1 1 2
=——|—= 1-|—= db -2-) =
24 <b2> <b2> o 25
j=3 J
(ii) We set
2 n 2 n
1 d d 1 d d
C'de—nd—i—Zj—Fﬁ—I—Zj, D'Z—Z—S(C},b})——s(cg,bg)—— s (cf, )
j=1 bj by o bj j=1 2 2 2 j=4
2 1 n d 1 2 d n
CZQd_”d+Zﬁ+Zﬁ’ andD:—§Zs(cj,bj)—§ s(cj, bj).
j=1"7 j=3 "7 j=1 j=3

Then we have

bybsC’ — bC = Akt dkb? -~ L d*kb? ooyt
€ =0 = T AR D R | 22D
j=1"7 j=4"7
By Lemma 4.3 (a) (ii) and Lemma 4.4 (a) (ii), we have
24B' — 24B = —12ds (c},by) + 12ds(cs, b)
dk
0203 — gy 4+ 1)
b3t (4% — baty +
By Theorem 3.2 (1) (b), we have
Aay,ag,ah,a4,...,0n)  Nai,az,a3,a4,...,a,)
bld—l - bd_l
3 3
A (dby, dby, by, by, ... ,by)  A(dby,dbg,bs,by,. .., by)
- prd—1 - pd—1
3 3

~ d—1 ~
1 [ bhbs bybs 1 1 1 b\ /b 11
= o — = — 4D | - — [ — —C4+-——-+D
bgdil (bﬂ)Q) ( 24 + 24()%()3 8 + bgfl b1by 24 + 24b 8 +

~ d—1
1 ~
_ 1 (ﬁ> (bgb3c’ —be— 2 4 oupr - 24D>

24 \ bib bsb,
dk (B \ b\ (B dR(d-1) "1
3 3 3 3\& — ™
S (2] —(2) B 2255 ) ).
24 <b1b2> { <b1> <b2> A > 7 }
j=4 J
(b) By the similar way as (a), we have the result. O
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