Identification of Dideoxygriseorhodin C Produced by a *Streptomyces* sp. No.76*1

Kunio Suetsuna and Yutaka Osajima*2

Among two pigments obtained from an actinomycete, *Streptomyces* sp. No.76, one pigment is identified previously as known griseorhodin C while other pigment is unidentified. In this connection, various spectral analyses were conducted to elucidate a structure of other pigment. The other pigment purified was identified as a 7,8-dideoxy derivative of griseorhodin C by the analyses of nuclear magnetic resonance (NMR) spectra and mass (MS) spectra and named dideoxygriseorhodin C.

In a series of our study on searching for new pigments as food color, a microbe producing red pigment, *Streptomyces* sp. No.76 was isolated from a soil sample. We isolated two pigments from culture broths, one of which was previuosly identified as griseorhodin $C^{1)}$ and the other was identified as a new derivative of griseorhodin C and named dideoxygriseorhodin C (2). In the present paper, we report the structural elucidation of pigment 2 (Fig.1).

Fig. 1. Structure of griseorhodin C and dideoxygriseorhodin C.

^{·1}水產大学校研究業績集 第1200号, 1989年1月23日受理。

Contribution from Shimonoseki University of Fisheries, No.1200. Received Jan.23, 1989.

^{*2}Faculty of Agriculture, Kyusu University.

Material and Methods

Production and Isolation of pigment 2

The strain *Streptomyces* sp. No.76 was cultured at 28°C for 3 days on a rotary shaker in 500 ml Erlenmyer flasks containing 100ml of a medium consisting of 2.5% soluble starch, 0.8% yeast extract, 0.5% polypeptone and 0.5% NaCl (pH7.2). The mycelial cake was obtained by centrifuging the cultured broth (10 ℓ). Crude pigment was extracted from the cake with ethyl acetate in an acidic condition. A flow diagram for the isolation procedures is given in Fig.2 where the final treatment by reversed phase HPLC gave purified pigment 2 (420 mg).

Methods of Analysis

Melting point was determined by Yazawa micro-apparatus. Mass spectra were measured on a Shimazu GCMS 9020-DF spectrometer,UV and visible spectra on a Shimazu UV-300 spectrophotometer, Infraded (IR) spectra on a Shimazu FTIR-4000 spectrophotometer and NMR spectra on a JEOL GX-500 spectrometer with ¹H-

Fig. 2. Isolation procedure for pigment.

NMR at 500 MHz and ¹³C-NMR at 125 MHz. ¹³C-¹H COSY NMR spectrum was obtained on a JEOL GX-270 spectrometer with ¹H-NMR at 270 MHz and ¹³C-NMR at 67.8 MHz. Chemical shifts are given in ppm using TMS as an internal standard.

Results and Discussion

Pigment 2 has the same physico-chemical

Fig. 3. ¹³C-NMR spectrum of pigment 2 in DMSO-d₆ at 125 MHz.

properties as pigment 1 (griseorhodin C) previously reported.1) Pignent 2 melted at 261-264°C with decomposition. The molecular formula was determined by means of mass spectral and elemental analyses. The FD-MS spectrum showed the molecular ion peak at m/z 494 and the high-resolution EI-MS (obs. m/z 494.0870, calcd. 494.0847). Elemental analysis; Found: C, 59.7 H, 3.86 Calcd. for $C_{25}H_{18}O_{11}$; C, 60.7, H, 3.64%. The UV spectrum and the IR spectrum of pigment 2 were very similar to pigment 1 (griseorhodin C) previously reported1) and showed the presence of a similar chromophore in the molecule.

In the $^{13}\text{C-NMR}$ spectrum (Fig.3), the presence of quinone (α , β , α ' β '—unsaturated) CO is derived from the carbon signals at δ_{C} 184.54 and δ_{C} 179.07. No IR sbsorption band

is observed in the vicinity of $1700 \sim 1760 \text{ cm}^{-1}$. Therefore, it is difficult to consider that partial structure has chain-type C=C-COO- (1720 cm⁻ ¹), $-COO-C = O (1760 \text{ cm}^{-1})$ and saturated -COOH (1735 cm⁻¹). On the other hand, the IR spectrum shows strong absorption at 1610 cm⁻¹ and weak absorption at 1650 cm⁻¹. The ¹H-NMR spectrum (Fig.4) at $\delta_{\rm H}$ 11.85 and $\delta_{\rm H}$ 13.24 shows two kinds of the phenolic OH having an intramolecular hydrogen bond. It is, therefore, supported that a quinone structure has an intrahydrogen bond. The Long-range molecular selective proton decoupling (LSPD) experiment established that the proton at $\delta_{\rm H}$ 6.38 is 3J distant from quinone CO ($\delta_{\rm C}$ 179.07). The nuclear Overhauser enhancement (NOE) is observed between $\delta_{\rm H}$ 6.38 and methoxy group at $\delta_{\rm H}$ 3.89. Therefore, the following structure is estimated.

Fig. 4. ¹H-NMR spectrum of pigment 2 in DMSO-d₆ at 500 MHz.

The NOE was observed between methyl proton at $\delta_{\rm H}$ 2.21 and methine proton at $\delta_{\rm H}$ 6.42, and between $\delta_{\rm H}$ 6.42 and $\delta_{\rm H}$ 6.76. However, no coupling among these protons is observed. Furthermore, one methyl proton $\delta_{\rm H}$ 2.21 and two methine protons $\delta_{\rm H}$ 6.42 and $\delta_{\rm H}$ 6.76 are combined with sp^2 carbon. Therefore, the following structure is estimated.

The IR spectrum showed absorption bands at 1690 cm⁻¹ and 1240 cm⁻¹. Therefore, it is considered that the partial structure may be not a chain ester but unsaturated lactone structure

chain ester but unsaturated lactone structure having a intramolecular hydrogen bond. The hydrogen-bonded phenolic OH can be observed in the $^1\text{H-NMR}$ spectrum at δ_{H} 10.78 and thus the following structure 5 is estimated.

Combination of structure 4 and 5 leads to structure 6. The structure 6 may be supported from the fact that the $^{13}\text{C-NMR}$ chemianl shift neighbouring the methyl group is δ_{C} 103.75.

The partial structure which have not been assigned are summarized as follows; $-CH_2CH_2 \times 1$, $CH(O) - \times 1$, $C \times 2$ and $H \times 1$. The 1H -NMR chemical shift of the methlene group is δ_H 1.99 and δ_H 2.51, and the remaining one carbon different from sp^2 -hybrized one has more downfield shift than δ_C 100. Therefore, it is considered to be a spiroketal carbon conjuated two oxygens.

The sum of bond members of structure 3 and 6 is four and that of structure 7 is five. Therefore, it is considered that the partial structure is not - CH(O)- but -CH(OH)-. It is impracticable to consider a proper structural formula for quaternary carbon -OH bond. The structure 8 is therefore estimated.

As described above, the structure formula consisting of a combination of 3, 6 and 8 can be estimated. It is considered that the typical compound associated with these structures belongs to griseorhodin group.

A 2D J correlated map (COSY), and the accompanying $^1\mathrm{H-}$ and $^{13}\mathrm{C-NMR}$ chemical shifts on the x and y axes are shown in Fig.5. The non-aromatic protons could be unambigously assigned to mutual connection of those carbons. Especially the chemical shift of C-7 correlated with H-7 and the chemical shift of C-8 correlated with H-8. Therefore, in consideration of the above results it is supported that the pigment 2 is 7,8-dideoxy

Fig. 5. $^{13}\text{C-}^{1}\text{H}$ COSY NMR spectrum of pigment 2 in DMSO- d_6 at 270 MHz and 67.8 MHz.

Fig. 6. EI-MS spectrum of pigment 2.

compound.

The molecular ion in the mass spectrum of pigment 2 appeared at m/z 494 and several of the diagnostic ions are rationalized in Figs. 6 and 7. These fragmentation patterns observed for pigment 2, lead the conclusion that the reduction at the chemical shift of C-7 and C-8 should give rise to an important ion at m/z 220 and 274 (the base peak). The diagnotically important fragment ions at m/z 220 (the base peak),192 (-CO) and 174 (-H₂O) observed for griseorhodin group^{2,3)} and the other fragment ion at m/z 274 compare well to a similar type compound, fusarubin.⁴⁾ Although the streochemistry of pigment 2 is still undetermined, the structure of pigment 2 has been elucidated to be dideoxygriseorhodin C by the spectral analyses.

Acknowledgments

We are indebted to Dr. T. Kondo of Chemical Instrument Center, Nagoya University, for measuring the NOE and LSPD spectra on a JEOL GX-500. We wish to thank Dr. K. Eckardt of Akademie der Wissenschaften der DDR for providing us with an authentic griseorhodin C.

References

- 1) K. Suetsuna and Y. Osajima: *J. Shimonoseki Univ. Fish.*, **37**, 51~61 (1988).
- R.M. Stroshane, J.A. Chan, E.A. Chan, E.A. Rubalicaba, A.L. Garretson, and A.A. Aszalos: *J. Antibiotics*, 32, 197-204 (1979).
- 3) D. Tresselt, K. Eckardt, and W. Ihn: *Tet-rahedron*, **34**, 2693-2699 (1978).
- 4) B.E. Cross, P.L. Myers, and G.R.B. Webster: J.Chem. Soc., (C), 930 (1970).

Fig. 7. Mass spectral fragmentations pattern of pigment 2.

Table 1. ¹H-and ¹³C-NMR assignments of dideoxygriseorhodin C

14 11 11 11 11 11 11 11 11 11 11 11 11 11	viin assignments of the	Oxygriscornoum C
Position	¹ H-	¹³ C-
1		179.07
2		160.10
3	6.38	110.14
4		184.54
4 a		106.35
5		158.04
50 H	13.24	
5 a		130.24
6	5.16	74.19
6 a		104.22
7	1.99	21.30
8	2.51	23.24
8 a		124.23
9	6.76	114.82
9 a		137.82
10	6.42	103.75
11		113.32
13		165.68
13 a		132.44
14		152.14
140 H	10.78	
14 a		147.93
16 a		148.71
17		154.19
170 H	11.85	_3
17 a		113.96
18	2.21	18.59
2-OCH3	3.89	56.94
Chaminal abifta ana in	(\$)	

Chemical shifts are in ppm (δ) downfield from internal TMS in DMSO- d_6 .

Streptomyces sp.No.76 の生産するジデオキシグリセオロジンCの構造解析

末綱邦男・筬島 豊

放線菌 Streptomyces sp.No.76 の生産する 2 種類の赤色々素のうち、一方については、グリセオロジンCと既に同定したが、ここでは他方の赤色々素の構造解析を行った。発色系に関して UV から色素の母核はグリセオロジンと認められた。一方、高分解能 EI-MS 及び元素分析値より分子式は $C_{25}H_{18}O_{11}$ であり、また、 ^{1}H -NMR、 ^{13}C -NMR、 ^{2}D -COSY NMR 及び MS スペクトルよりグリセオロジン ^{2}C の 7、8 ^{2}C の 7、8 ^{2}C が ^{2}C を ^{2}C の 7、8 ^{2}C であると同定した。