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Motion Path Searches for Maritime Robots

Eiji Morimoto１†, Makoto Nakamura１, Dai Yamanishi１ and Eiki Osaki２

Abstract : A method based on genetic algorithms was investigated for its capability to identify efficient 
paths for maritime robots. Data for determining robot motion from information obtained in map 
form regarding regions with topographical features or other obstacles in the control volume, such as 
structures or navigational markers, or dangerous regions containing such features as ocean currents, 
tidal currents, or wind, which increase energy consumption and travel time, were encoded as genes. The 
fitness values of the procedure for finding the optimal motion path after evolution of the population were 
observed. The motion path was divided into a rectilinear array and 120-bit genes containing motion data 
as bit information were constructed. A criterion for assessing each gene was calculated from the route 
length and penalty value and used as the fitness value. The optimal solution was then searched for by 
driving the evolution of the travel-pattern population. This study generated information about the basic 
characteristics and the effectiveness of the proposed procedure.
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Introduction

　Marit ime robots must be capable of  moving 

autonomously１）,２）. Given a starting point and a 

destination, they must be programmed with the capability 

to automatically select the optimal path from among 

multiple possible paths between the two points on the 

basis of some pre-determined evaluation function. 

Generally, an area through which a robot moves （the 

control volume） contains some variety of impediments to 

motion. On the ocean surface, these can be local 

characteristics, such as winds and tides of various 

directions and strengths, topographical features, such as 

islands and capes, or artificial structures, such as 

lighthouses, buoys, markers, and fixed net３）. In addition, 

some zones are subject to legal restrictions. There is a 

great variety of such obstacles.

　Underwater movements are also subject to factors 

affecting navigation, such as the bottom topography and 

tides. These must be accounted for in selection of the 

motion path. Robots that operate inside ships or marine 

structures also need to avoid a wide variety of obstacles 

within these operating spaces when they move and work 

and so their optimal paths should be chosen from the 

viewpoint of maximizing work efficiency.

　The basic criteria for assessing the performance of a 

robot include the travel time, fuel consumption, and 

actual distance covered. Optimal motion paths maximize 

or minimize combinations of these factors. In performing 

such searches, the operating system of a robot must 

identify the optimal solution among a large number of 

candidates satisfying appropriate criteria, but this 

generally requires an immense number of calculations. 

Thus, it is key to determine how to efficiently discover 

this solution４）,５）. The present study investigates one such 

method using a genetic algorithm to determine the 

optimal path.
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Methods

　In genetic algorithms, information expressing the 

potential solutions to the problem to be solved are 

encoded at a genetic locus. Evaluation criteria based on 

the objectives are applied to the series of information 

encoded at this genetic locus, and each gene is assessed 

for how well it fits with the objectives. Many chromosomes 

containing multiple genes are generated, that population 

then acts as the first generation to generate the genes for 

the next generation, and this evolutionary process is 

repeated for multiple generations to generate evolution in 

the population toward characteristics that agree with the 

objectives of the problem. During the process of 

generational turnover, genes having fitness values 

beneath a certain threshold are eliminated from the 

population; this raises the mean fitness value of the 

overall population and enables it eventually to reach the 

optimal solution６)-８).

　A genetic algorithm is executed as follows :

Step１: Initialization － Individuals are generated at random.

Step２: Assessment － The fitness value of each individual 

is calculated.

Step３: Selection － Individuals are classified according to 

this calculated fitness.

Step４: Crossover － Selected individuals are arbitrarily 

paired and used to create the next generation.

Step５: Mutation － Mutations are introduced at a given 

probability to individuals in this new generation.

Step６: Assessment － The fitness value of each individual 

is calculated.

Step ７: Judgment － Terminating conditions are checked, 

and either the process is  repeated from Step３, 

or the execution terminates.

Figure １ is a flow chart of the above procedure.

　In the present study, this algorithm is applied by 

encoding a possible motion path for each gene for moving 

from the starting point to the destination. The motion 

search problem was then solved, using an evolutionary 

process involving many generations, by creating, from a Fig. 1.　Getetic algorithm
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starting pool of genes encoding different motion patterns, 

genes that correspond to an optimal motion pattern 

satisfying the search criteria.

　Motion and location data were encoded in binary form 

at the genetic locus. The simulation range was divided into 

２n divisions in the longitudinal direction and m divisions 

in the lateral direction. Figure ２ shows the structure of a 

gene. m segments of n bits each were arranged from the 

left side. If the kth segment is denoted by pk, motion is 

from pk to pk+1.

　n = ６ and m = 20 were used in the simulation, and the 

control volume was divided into 64 longitudinal and 20 

lateral cells. Accordingly, the chromosome consisted of a 

locus of ６ bits × 20 = 120 bits.

　Obstacles and penalty regions were placed in the control 

volume. These obstacles were topographical features, 

structures, and other objects that would impede the 

robot’s progress. When the selected path included any of 

these, it was rejected and replaced with a clear path.

　The penalty regions allowed the robot to enter and 

pass through them; however, the fitness value, which was 

employed as the evaluation function, was decremented in 

proportion to the penetration of the penalty region. Also, 

robots are placed under greater loads as they pass 

through penalty regions than when operating in ordinary 

regions. That is, these regions correspond to places 

where a robot is subject to an ocean current, tidal 

current, wind, or other factor that increases the travel 

time and fuel consumption.

　The fitness value was evaluated by calculations using 

the route length and the penetration into the penalty 

region. The route length was taken to be the total travel 

distance from the starting point to the destination. The 

penalty value was set to an appropriate value that 

differed for every penalty region. The penalty value was 

calculated using the length of the path through the 

penalty region. These two quantities were summed for 

each individual, and the reciprocal of the sum was used 

to calculate the fitness value for the individual.

　Many methods have been proposed for crossover, 

including multipoint crossover, uniform crossover, cyclic 

crossover, partial crossover, order-based crossover, and 

uniform location crossover９）. In this study, the method 

selected was multipoint crossover.

　Many methods have also been proposed for mutation: 

random, perturbation, inversion, scramble, rotation, 

translocation, duplication, insertion, and deletion10）. In this 

study, values were changed at randomly selected genetic 

loci. The range of loci where the changes were made was 

determined in a preliminary experiment to avoid a 

deterioration of convergence, and a stop or stagnation of 

revolution11). The effect of mutation has been calculated 

and is shown in Figure ３.

Results

Path search

　Obstacles were placed in the interior of the control 

volume. Figure４ shows one of the basic motion paths 

created by the algorithm. The robot starts from the 

origin ; coordinate （0,0） to the destination （0, 20）. G 

shown in the legend means the generation number of 

genes. In the figure, the location X and Y mean the 

disance from the origin, and the rectangular painted dark 

indicates the obstacle which robots cannot move across. 

The figure shows the number of generational turnovers 

and variations in the search path. It can be seen that the 

repetition of generational turnovers shortened the detour 

paths avoiding obstacles, leading to the optimal path 

between the two given points.

Fig. 2.　Structure of gene
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Such factors increase the crossing time and travel energy 

usage for a robot, and thus entry into these areas should 

be minimized. In the simulation shown in the figure, it 

can be seen that a path crossing a penalty region is 

selected by the initial generation, but as the evolutionary 

process is repeated, this region is increasingly avoided, 

resulting in the choice of a path with high fitness value.

　Figure ６ shows the performance of the algorithm after 

　Figure ５ shows the results of a path search in a control 

space with only penalty regions painted thinly and no 

obstacles. In th figure, the destination is （0,64）. Unlike 

obstacles, penalty regions allow entry, exit, and crossing, 

but when a robot passes through a penalty region, its 

fitness value is reduced as a function of crossing distance. 

In the real world, such areas would be those exposed to 

strong winds or tidal currents that impede movement. 

Fig. 3.　Effect of mutation
 

 

Figure 3  Effect of mutation 
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Figure 4  Results of path search in the area with an obstacle 
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Fig. 4.　Results of path search in the area with an obstacle
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obstacles were added to the control volume in a 

complicated pattern, along with additional penalty 

regions. The optimal path will from （0,0） to （0,64） 

avoiding two obstacles and penalty areas.

Calculation of the fitness value

　To see how each would affect the fitness value, each 

quantity related to penalties or path length was 

multiplied by a coefficient, and differences in search 

conditions were investigated using these coefficients as 

parameters. Of course, the results for regions given with 

few penalty regions were different from those for regions 

with many. The destination is set up at the point （50, 40）, 

and the optimal path is took as moving just ４ distance 

higher than the position following along the warning area 

from sea bottom.

 

Figure 5  Results of path search in the area with penalty regions 

0

10

20

30

40

50

60

70

0 5 10 15 20

Lo
ca

tio
n 

Y

Location X

1,000 G

5,000 G

10,000 G

 

 

Figure 6  Results of path search in the area with complicated configurations 
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Fig. 6.　Results of path search in the area with complicated configurations

Fig. 5.　Results of path search in the area with penalty regions
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marine structure. Such locations are full of objects that 

can impede free movement, such as stacks of materials, 

equipment, pillars, and cables, so the robot will be forced 

to avoid these objects when moving. It will be possible to 

search for and realize efficient motion paths in such 

environments by applying a method like that shown in 

this study.

Discussion

　In the present paper, a method for searching for the 

motion path of a maritime robot using a genetic algorithm 

was proposed, and the characteristics and effectiveness of 

the method were investigated. The proposed search 

method used as the fitness value of the genetic algorithm 

the overall route length and criteria for motion over a 

region subdivided into a recti l inear array. The 

chromosomes used in the genetic algorithm contain 

genetic loci with lengths equal to the total length of a 

sequence of ６-bit data representing locations in space. The 

present study shows that it is possible to conduct a 

search for the shortest motion path that avoids dangerous 

regions and regions containing impediments to motion.

　The following issue was identified in the course of the 

　And the way in which a penalty was assessed also 

varied with the settings, for regions with multiple 

characteristics. Therefore, we could not identify any 

qualitative tendencies, but we found that we could 

increase the sensitivity of the search by weighting these 

parameters in a way appropriate to the degree and 

distribution of the penalties included in the area.

Movement in the ocean

　This simulation also modeled the unevenness of the 

ocean bottom, in addition to obstacles and penalty 

regions. The results are shown in Figure ７. In the figure, 

thinly painted region indicates penalty area, and dark 

painted region is sea bottom. As in the above results, the 

greater the number of generations, the more efficient the 

identified path became. It was verified that raising the 

assessed value on passage through a penalty region 

reinforced the tendency to avoid such regions.

Movement of land-based robots

　Using our algorithm, the same procedure can be 

applied to robots designed to work on land surfaces. In 

the present study, it was envisaged that the typical 

environment for the robot would be the deck of a ship or 

 

Figure 7  Results of path search in the ocean 
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Fig. 7.　Results of path search in the ocean
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present study: When the robot is passing through a 

sector, the allowed range of motion includes all of the 

next contiguous sector, so the amplitude of lateral 

oscillations in the path tended to become large. It is 

necessary to suppress this oscillation amplitude in order 

to reduce the search time; therefore, a technique is 

needed to limit the permitted range of motion in the 

region ahead.

　The following are other points that should be addressed 

in future research. First, the effect of variation in the 

criteria used for crossover and mutation on the search 

outcome from this algorithm should be explored. In this 

study, however, both crossover and mutation were 

employed as a single method, and so these were not 

subjects of study in the simulations. This aspect should 

be addressed in a preparatory study in the future in 

order to identify qualitative tendencies. One can 

anticipate that land-based robots other than those used in 

simple applications may well need spatial data in addition 

to two-dimensional data. This will necessitate construction 

of genetic information for three-dimensional paths, which 

must be addressed in future investigations.
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海洋作業ロボットの移動経路探索

森元映治，中村　誠，山西　大，大﨑榮喜

　海洋作業ロボットの移動経路を効率よく探索するために、遺伝的アルゴリズムを用いる方法について検討した。

移動領域の地形、構造体、標識などの障害物、海流、潮流、風などの影響により通過するエネルギーや時間の消費

を増大させる領域、移動に危険を伴う領域等に関する情報をマップとして得るとき、移動を決める情報を遺伝子に

配し、群の進化により最適移動経路を求める手法の適応性について調べた。移動領域を格子状に区切り、移動地点

情報をビット情報として持つ120ビットの遺伝子を構成し、適応度に経路長とペナルティ量から算出する評価量を

用い、経路パターン母集団を進化させる事により、最適解を求めた。この結果、提案する手法の基礎的特性と有効

性に関する知見が得られた。


