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Abstract :  A system for automatic monitoring of wave conditions in littoral waters was 

constructed. Based on previously reported findings using daytime ocean surface images, the 
ability of the system to use nighttime images was investigated. Texture analysis of ocean 
surface images was performed on infrared images, and the characteristic quantities of these 
results were compared with wind force. Two analytical methods were used to extract the 
image characteristics of the quantitative result: the spatial gray-level dependence method and 
the gray-level difference method. A multilayer neural network  was trained to predict ocean 
wind velocity by error back-propagation. The specified conditions and optimal ocean surface 
images were then compared to the network structure and learning conditions to evaluate the 
effectiveness of this system and to assess its limitations.
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Introduction

　For members of the fishing industry, as well as ship 
operators and marine safety authorities, a knowledge 
of ocean wave conditions is very important. Ocean 
surface conditions have an inestimable impact on the 
efficiency and safety of fishing and maritime activities 
in the coastal waters of Japan; such activities extend 
from the automated navigation of trawlers to the more 
mechanical  tasks of fishing, as well as the installation, 
maintenance and management of moored floating 
equipment, aquaculture rafts and fixed nets. This study 
attempted to develop a system that automatically 
detects ocean wave conditions using images of the 
ocean surface. A previous report addressed surface 
conditions during the day1). However, in this study, 

infrared nighttime images were used to facilitate the 
measurement and monitoring of ocean wave conditions 
for a full 24-hour period. The wave conditions were 
subjected to texture analysis and digitized, and these 
data were then used to train a neural network that 
could be applied to recognizing and predicting wave 
conditions.

Texture Analysis

　“Texture” refers to the large- and small-scale 
patterns in an image. As such, texture is not restricted 
to being a characteristic of highly ordered artificial 
objects, such as rows of blocks etc., rather, it can also 
be used to characterize natural phenomena, such as 
trees or the surface of water. Thus, monochromatic 
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surfaces can have textures with no variation in color 
density.
　These structural and statistical analyses of texture 
can be used to derive the characteristic quantities 
of the texture in the image2),3). In texture analysis at 
the structural level, the basic elements constituting 
straight lines, points and other textural components are 
extracted from the image and characteristic quantities 
are revealed using rules that describe their spatial 
relationships. In this way, the constituent elements 
of the target image can readily be distinguished from 
artificial textures. In texture analysis at the statistical 
level, the color density of each pixel is examined 
for uniformity, directionality, variations in contrast, 
and other characteristic quantities. Since structural 
regularities, with respect to points and lines, were not 
observed in the data captured at the ocean surface in 
this study, the statistical level of texture analysis was 
considered appropriate for the current case.

Spatial gray level dependence method
　Figure 1 shows the frequency at which the color 
densities (gray levels) of a pair of pixels (x1,y1) and 
(x2,y2) in a specified spatial relationship (d,θ) match 
with a density pair f(x1,y1)=i, f(x2,y2)=j. The probability 
of this match is defined by Sθ(i,j).
　

　θ, which is the angle between a line joining the pixel 
pair and a horizontal line, can take the four values of 
0º, 45º, 90º and 135º. The distance between the pixel 
pair under consideration is d in the θ direction. The 
procedure for creating the gray level cooccurrence 
matrix P(i, j│d,θ) is as follows. A pair of pixels is 
selected as the density pair when a second point lies at 
distance d in the θ direction from the first point. Next, 

the color density values of the pair are determined; if 
these densities are i, j, then the terms are summed to 
correspond to the terms of P(i, j│d,θ). Either of the 
two members of the pair is allowed to have either gray 
level. The gray level cooccurrence matrix then has the 
size N × N, where N is the number of gray levels in 
the image.

　 The values of the characteristic quantities found by 
texture analysis can be determined using the following 
equations.
Energy; 

・・・・・・(1)     

Entropy;

・・・(2)

Correlation; 

・・(3)

Local infirmity;

・・・・・・・(4)

Momentum; 

・・・・・(5)

where,
i, j: Pixel color density
Sθ: Probability that a pixel at distance  in the  direction 
from a pixel of density  in the image will have density 
θ: Angle with respect to the horizontal by a straight 
line between two pixels
d: Distance from a pixel of density  to a pixel of 
density 
vx,vy: Mean color densities
σx,σy: Variance of color density

Gray level difference method
　We find the probability f(i,δ) that the difference i 
in the densities of two points separated by a constant 
displacement δ = (d,θ) (see Figure 1), and use this 
probability to calculate the  characteristic quantities.
The characteristic quantities identified by texture 
analysis can be identified using the following 
equations: 

Figure 1　Pair of pixels
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Contrast;

・・・・・・(6)

Angular second moment; 

・・・・・・(7)

Entropy;

・・・・(8)

Mean；

・・・・・・・(9)

Inverse differential moment;

・・・・・・(10)

where
N: Color density of pixel
i: Difference between density value L at (x1, j1) and 
density value M at  (x2, j2) 
f: Probability that the color density difference will be i

Neural Network

　An “artificial neural network” refers to mimicking 
the data processing that occurs in the cells (neurons) of 
the human brain using a computer. Numerical models 
perform the role of neurons, and the data-processing 
structure consists of a network of interconnected 
models4). This process facilitates numerical modelling 
of a system based directly on sets of input and output 
data, without equations. Figure 2 shows a model of a  
neuron.
　x1,x2,x3...,xn in the figure correspond to the inputs,  

w1,w2,w3...,wn correspond to the combination loads of 
the paths, and y represents the output. If xi (i=1,2,3...n) 
represents the input signal from the ith neuron, wi 
(i=1,2,3...n)represents the combination load, S is the 
sum of input signals from all other neurons, and fh is 
the sigmoid function, then we can obtain the following 
expression:

　　　　　
・・・・・(11)

Output y is,
　　　　　

・・・・(12)

A multilayer neural network shown in Figure 3 
consists of an input layer, an intermediate layer 
and an output layer. There are no interconnections 

within a layer in this type of neural network; a signal 
proceeds in a single direction, from the input layer 
through the intermediate layer to the output layer. This 
characteristic enables the network to learn faster than 
an interacting neural network.

Experiments and Results

Textural analysis of wave images
　The Beaufort wind scale5)  shown in Table 1 was 
used as an indicator of the wave conditions shown 
in the different images. Figures 4 provide images of 
training patterns.
　Using image analysis software, the training images 
were analyzed using both the spatial gray level 
dependence method and the gray level difference 
method. Portions samples of the images were 
employed, as shown in Figure 5. The sample size was 
500 × 200 (width x height) pixels.

id

Figure 2　Numerical model of neuron

Figure 3　Multilayer neural network



　Learning was performed using a neural network. 
The values for the characteristics of extracted energy, 
entropy, correlation, local uniformity and inertia were 
calculated. The color indices were classified as red, 
green or blue during analysis, but these were limited 
to just one color for comparison in Figure 6. No 
particularly prominent characteristics were found in 
this analysis, so red was employed as an index for the 
remainder of the experiment.
　A network with inputs that consisted of energy, 
entropy, correlation, local uniformity and inertia, 
and an output of wind scale was created. Once the 
neural network had been trained, the prediction was 
calculated as output. The learning conditions were set 
for the neural network, which was trained to assess the 
relation between the wave image and wind scale. Table 
2 shows the parameters for learning conditions.

Texture analysis of unclassified images
　An analysis of images with unknown wave 
conditions was performed using the same procedure 
as described for the training data. Figures 7 show 
wave images F, G and H for which the wind scale was 
unknown. 

(a) wind scale 1

(b) wind scale 2

(c) wind scale 3

(d) wind scale 4

(e) wind scale 5

Figure 5　Training image E marked to show cut-out portion

Figure 4　Training images A - E

Figure 6　Local uniformity of colors

Table 2  Learning conditions used for the neural network 

Learning iterations 10000

Permissible error 0.1

Number of hidden units 10

Random numbers 1

Fraction 100.%

Lower limit -1

Upper limit 1

(a) Image F

(b) Image F

(c) Image H
Figure 7　Unclassified images
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Table 1  Beaufort scale of wind force

Wind 
force 
class

Wind speed Sea surface Wave ht.

[kt] [m/s] [m]

1 1～3 0.3～1.5 Waves resemble fish 
scales 0.1

2 4～6 1.6～3.3 Small waves created, but 
crests do not break 0.2

3 7～10 3.4～5.4 Larger waves created, 
occasional whitecaps 0.6

4 11～16 5.5～7.9 Small-medium waves. 
Frequent whitecaps. 1

5 17～21 8.0～10.7 Medium waves, numerous 
whitecaps. 2



Learning with neural network and predicting winds
　The analytical results from the training images were 
used for training. Figure 8 shows the predicted wave 
conditions based on the teaching and unclassified 
images. There are some concerns about the numerical 
stability of the predictions inferred from images A – C, 
but the scatter was low in the unclassified image F, and 
the values were relatively stable.

Predictions with gray level difference method
　The neural network was trained using the data 
obtained with the spatial gray level dependence 
method. The contrast, angular second moment, entropy, 
mean, and inverse difference moment obtained with 
the gray level difference method were used for training 
using the same procedure described above. Figure 9 
shows the results.

　In this study, the gray level difference method was 
found to be less suitable for training than the spatial 
gray level dependence method. Still, since the greater 
the wind scale, the greater the precision achieved 
by the gray level difference method, the gray level 
difference method may well be effective for predicting 
wave conditions under high winds, despite the lack of 

robust findings observed in this study.

Predictions for analytical regions of varying sizes
　Instead of using an image measuring 500 × 200 
pixels, we increased the size of the image to 1000 ×
200 pixels, and show the results in Figure 10. The 
results showed that the findings obtained from the 
analysis were stable when the size of the image area 
was doubled. Interesting, more precise predictions 
were obtained for cases A – C, whose values had not 
been very stable when images measuring 500 × 200 
pixels were measured.　

Predictions obtained from unclassified images 
after changing analytical region size
　Figure 11 shows the predictions of the trained 
network obtained from unclassified images F, G and 
H. Although the results shown in image G were not 
considered very stable, the values obtained from image 
H were stable. When these findings were compared 
with the Beaufort wind scale, image G was classified as 
wind scale 3, and image H, as wind scale 2, essentially 

Figure 8　Wind scales of training images and prediction results 
from teaching and unclassified images　

Figure 9　Predicted results using the gray level difference method

Figure 10　Predicted results obtained using a 1000×200 pixel 
image method　　　　　　　　　

Figure 11　Prediction results using 1000×200 unclassified
images
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matching the predicted results.

Effect of changing the number of units in the 
intermediate layer
　The number of units comprising the intermediate 
layer of the three-layer neural network was increased 
from 5 to 15 and then to 20 units, and the obtained 
results were compared in Figure 12.
　Figure 12(c) shows the error between the predicted 
values and the estimates based on visual observations 
when the number of units in the intermediate layer 
was changed from 500×200 to 1000×200. When the 
number of units in the intermediate layer was 5 units 
and the image was 500×200 pixels, convergence 

was 75% at 10,000 learning cycles, so learning was 
forcibly terminated at this cycle number. No notable 
changes were observed in the results obtained using an 
intermediate layer with other sizes.

Summary

　Although this experiment employed nighttime 
images of ocean surface waves, which provide 
comparatively little detail of the photographed. Two 
analytical methods were used here, spatial gray 
level dependence and gray level difference; within 
the present range, the spatial gray level dependence 
method showed superior predictivity. The gray level 
difference method did not provide satisfactory results 
in the present study. This is probably because of the 
difficulties associated with extracting characteristics 
using that method and nighttime images, which 
typically have characteristic quantities that are 
relatively poorly defined. However, the accuracy of the 
gray level difference method did improve as the wind 
scale increased. It is therefore possible that that method 
could be used, with appropriate pre-processing, to 
improve prediction accuracy.
　Some improvement in accuracy was observed under 
calm conditions when the size of the analytical region 
was increased. This improvement was attributed to 
obtaining more accurate values for the characteristic 
quantities from larger extracted portions. However, 
when the wind conditions were strong, the accuracy 
deteriorated as convergence increased.
　Provided that convergence was obtained in this 
experiment, the number of units in the intermediate 
layer did not have any particular affect on accuracy. 
Although color did not markedly affect analytical 
results, larger extracted images could be beneficial, as 
images with 1000×200 pixels provided more accurate 
data than images measuring 500×200 pixels, at lower 
wind scales.
　The following are recommended topics for future 
research: The efficacy of both analytical methods used 
in this study should be reviewed at higher wind scales; 
the minimum practicable size for an image to provide 
accurate predictions should also be identified.

 

 (a)　Five 500×200 units

 (b)　Five 1000×200 units

 (c)　Error

Figure 12　Effect of changing number of units in intermediate layer 
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