カスザメの好中球の形態学的および細胞化学的特徴

近藤昌和[†],前川幸平,安本信哉

Morphological and Cytochemical Characteristics of Neutrophils from Japanese Angelshark *Squatina japonica*

Masakazu Kondo[†], Kouhei Maekawa and Shinya Yasumoto

Abstract : Three types of granulocytes were observed in peripheral blood of Japanese angelshark *Squatina japonica* (Squatinidae, Squatiniformes, Squalimorphii, Elasmobranchii). The neutrophil was the only phagocytic granulocyte and had two types of granules (neutrophil granule, NG; type A, NG-A; type B, NG-B) with stratified structure. The NG-A was long-elliptic shape, and consisted of three layers: Eosinophilic rod-shaped inner layer (L0), eosinophilic middle layer (L1) with long-spindle outline, and basophilic outer layer (L2). The NG-B was round or oval, and both inner (L0) and outer (L1) layers of this granule was chromophobic. Several lysozomal enzymes were detected in NG-B, but the positive site was different among enzymes. Alpha-naphtyl acetate esterase, α -naphtyl butyrate esterase and naphthol AS-D chloroacetate esterase (NASDCAE) were detected in the L0 of NG-B. According to the acid phosphatase positive site, NG-B were classified into three types: NG-B with positive L0 (negative L1), NG-B with negative L0 (positive L1) and NG-B with positive L0 (strongly) and L1. Furthermore, the L0 of NG-B around nucleus showed positive reaction to periodic acid Schiff reaction after digestion with α -amylase. The neutrophils lacked alkaline phosphatase, β -glucuronidase and peroxidase. The L0 and L1 of NG-A showed positive reaction to Sudan black B and NASDCAE.

Key words : shark, Squatina japonica, granulocyte, morphology, cytochemistry

緒言

軟骨魚類(綱)は全頭亜綱と板鰓亜綱に分類され,前者 はギンザメ目のみからなる¹⁾。一方,板鰓類はエイ区とサ メ区に大別され,後者はネズミザメ上目とツノザメ上目に 二分される¹⁾。前報において,エイ区に属するアカエイ *Dasyatis akajei*(トビエイ目アカエイ科)の血液中には4種 類の顆粒球が存在することを明らかにした^{2,3)}。それらのう ち,貪食能を有するのは1種類の顆粒球であり,好中球に 相当すると考えられた²⁾。本研究では,板鰓類における顆 粒球の形態および種類の多様性を明らかにする研究の一環 として,サメ区のツノザメ上目Squalimorphiiカスザメ目 Squatiniformesカスザメ科Squatinidaeに属するカスザメ *Squatina japonica*について,好中球の形態学的および細胞 化学的特性を報告する*。

材料および方法

山口県西方の響灘において刺網漁で捕獲されたカスザメ 2尾(体重: No. 1, 4.8 kg; No. 2, 2.0 kg)を水産大学校の飼 育施設に搬入し,1週間馴致飼育したのちに実験に供した。 飼育期間中は無給餌とした。採血時の水温は19.0℃(No. 1) および23.0℃(No. 2)であった。キナルジンで麻酔後,尾 部血管から採血した。血液塗抹標本の作製,MRSV(Table 1) および各種細胞化学染色法は近藤・高橋⁴に,パン酵母の 細胞壁由来のzymosan粒子に対する貪食試験は近藤ら⁵に したがった。

†別刷り請求先 (corresponding author): kondom@fish-u.ac.jp

水産大学校生物生産学科 (Department of Applied Aquabiology, National Fisheries University)

^{*}本研究の一部は,平成29年度日本魚病学会春季大会(2017年3月11日)において報告した[319:近藤昌和,前川幸平,安本信哉:カスザメの好中球の形態学的特徴(プログラムおよび講演要旨,43)]。

PN		Condition ^{1,2}	PN		Condition ^{1,2}
1	MG	: DW	42	G	: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 15 min
2		: 5 mM PB, pH5.0	43		: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 60 min
3		: 5 mM PB, pH6.0	44		: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 15min
4		: 5 mM PB, pH7.0	45		: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 60min
5		: 5 mM PB, pH8.0	46	MGG	: DW, 1:20, 15 min
6		: ¹ / ₁₅ M PB, pH5.0	47		: DW, 1:20, 60 min
7		: ¹ / ₁₅ M PB, pH6.0	48		: DW, 1:100 , 15 min
8		: ¹ / ₁₅ M PB, pH7.0	49		: DW, 1:100 , 60 min
9		: ¹ / ₁₅ M PB, pH8.0	50		: 5 mM PB, pH5.0, 1:20, 15min
10	G	: DW, 1:20, 15 min	51		: 5 mM PB, pH5.0, 1:20, 60min
11		: DW, 1:20, 60 min	52		: 5 mM PB, pH5.0, 1:100, 15 min
12		: DW, 1:100 , 15 min	53		: 5 mM PB, pH5.0, 1:100, 60 min
13		: DW, 1:100 , 60 min	54		: 5 mM PB, pH6.0, 1:20, 15min
14		: 0.5 mM PB, pH5.0, 1:20, 15min	55		: 5 mM PB, pH6.0, 1:20, 60min
15		: 0.5 mM PB, pH5.0, 1:20, 60min	56		: 5 mM PB, pH6.0, 1:100 , 15 min
16		: 0.5 mM PB, pH5.0, 1:100, 15 min	57		: 5 mM PB, pH6.0, 1:100 , 60 min
17		: 0.5 mM PB, pH5.0, 1:100, 60 min	58		: 5 mM PB, pH7.0, 1:20, 15min
18		: 0.5 mM PB, pH6.0, 1:20, 15min	59		: 5 mM PB, pH7.0, 1:20, 60min
19		: 0.5 mM PB, pH6.0, 1:20, 60min	60		: 5 mM PB, pH7.0, 1:100, 15 min
20		: 0.5 mM PB, pH6.0, 1:100 , 15 min	61		: 5 mM PB, pH7.0, 1:100, 60 min
21		: 0.5 mM PB, pH6.0, 1:100 , 60 min	62		: 5 mM PB, pH8.0, 1:20, 15min
22		: 0.5 mM PB, pH7.0, 1:20, 15min	63		: 5 mM PB, pH8.0, 1:20, 60min
23		: 0.5 mM PB, pH7.0, 1:20, 60min	64		: 5 mM PB, pH8.0, 1:100, 15 min
24		: 0.5 mM PB, pH7.0, 1:100, 15 min	65		: 5 mM PB, pH8.0, 1:100, 60 min
25		: 0.5 mM PB, pH7.0, 1:100, 60 min	66		: ¹ / ₁₅ M PB, pH5.0, 1:20, 15min
26		: 0.5 mM PB, pH8.0, 1:20, 15min	67		: ¹ / ₁₅ M PB, pH5.0, 1:20, 60min
27		: 0.5 mM PB, pH8.0, 1:20, 60min	68		: ¹ / ₁₅ M PB, pH5.0, 1:100, 15 min
28		: 0.5 mM PB, pH8.0, 1:100, 15 min	69		: ¹ / ₁₅ M PB, pH5.0, 1:100, 60 min
29		: 0.5 mM PB, pH8.0, 1:100, 60 min	70		$^{1}_{15}$ M PB, pH6.0, 1:20, 15 min
30		$\frac{1}{150}$ M PB, pH5.0, 1:20, 15 min	71		$\frac{1}{15}$ M PB, pH6.0, 1:20, 60 min
31		: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 60min	72		$\frac{1}{15}$ M PB, pH6.0, 1:100, 15 min
32		: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 15 min	73		$\frac{1}{15}$ M PB, pH6.0, 1:100, 60 min
33		: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 60 min	74		$\frac{1}{15}$ M PB, pH7.0, 1:20, 15min
34		: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 15min	75		: ¹ / ₁₅ M PB, pH7.0, 1:20, 60min
35		: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 60min	76		$\frac{1}{15}$ M PB, pH7.0, 1:100, 15 min
36		: ¹ / ₁₅₀ M PB, pH6.0, 1:100, 15 min	77		: ¹ / ₁₅ M PB, pH7.0, 1:100, 60 min
37		: ¹ / ₁₅₀ M PB, pH6.0, 1:100, 60 min	78		: ¹ / ₁₅ M PB, pH8.0, 1:20, 15 min
38		: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 15 min	79		: ¹ / ₁₅ M PB, pH8.0, 1:20, 60 min
39		: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 60 min	80		: ¹ / ₁₅ M PB, pH8.0, 1:100, 15min
40		: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 15 min	81		: ¹ / ₁₅ M PB, pH8.0, 1:100, 60min
41		: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 60 min			

Table 1. Staining conditions of multiple Romanowsky-type stain valuation

¹MG, May-Grünwald stain (after fixation and staining for 5 min with MG concentrated-solution, the smear was stained again for 10 min in MG diluted (1:1) with various solution); G, Giemsa stain (after fixation with absolute methanol for 5 min, the smear was air-dried and then stained with Giemsa diluted with various solution); MGG, May-Grünwald • Giemsa stain (after staining with MG stain, the smear was stained with diluted Giemsa solution); DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.

²Diluent for Giemsa of MGG stain were DW, 0.5 mM PB or $^{1}/_{150}$ M PB.

PN, preparation number.

結 果

カスザメの血液中には3種類の顆粒球が観察された。そ れらのうち、zymosan粒子に対する貪食は好中球にのみ認 められた。好中球にはアルシアンブルー、オイルレッドO およびズダンIII染色では陽性所見は観察されなかった。 また、アルカリ性フォスファターゼ (AIP)、β-グルクロニ ダーゼ (β-Glu) およびペルオキシダーゼ (PO) は検出さ れなかった。

好中球は長径約20.0 μmの円形または卵円形であり,核 の染色質網は細かく,小型の濃縮染色質が散在していた。 核は偏在し,核の輪郭に凹凸が顕著であった。通常単核で あったが,分葉核(最大3分葉)も認められた。好中球に は貪食能が認められ,細胞質には2種類の顆粒(好中球顆 粒neutrophil granule, NG)が観察された(Fig. 1)。いず れの条件のRomanowsky型染色標本においても両顆粒は 認められ,細胞質内に多数散在していた。また,多くの魚 種の好中球に観察されている好塩基性の不定形小体(Y小 体⁴⁵⁾)は認められなかった。

好中球顆粒のうち, 顆粒内にエオシン好性の芯様構造を 有するA型顆粒(NG-A)は長楕円形(長径2.0 µm以下, 短径0.8 µm以下) であり (Figs. 1A, 1B; Table 2), 3層か らなる成層構造を有していた。エオシン好性の芯様構造は, 顆粒の中心を囲む層(L0)と、L0を囲むL1から構成され ており、L0とL1はともにエオシン好性を示した (Figs. 1C, 1D; Table 2)。L0は長径0.8 µm以下, 短径0.2 µm以下 の桿形であり、L1の輪郭は長紡錘形(長径1.0 µm以下、 短径0.3 µm以下)であった。L1の周囲には染色条件によっ て難染色性または好塩基性(淡青色)を示すL2が観察さ れた (Figs. 1C, 1D; Table 2)。LOおよびL1の長軸方向の 中心線は多くの場合, 顆粒の中心線と一致していたが, 稀 に顆粒内に偏在していた。好中球に貪食されたzymosan粒 子はしばしば淡橙色を呈した (Fig. 1E)。EG-Aはperiodic acid Schiff(PAS)反応陰性であった(Figs. 1F, 1G; Table 3)。 しかし、ズダン黒B(SBB)染色によってL0とL1が陽性反 応を示した (Figs. 1H, 1I)。また,酸性フォスファターゼ (AcP), α-ナフチルアセテートエステラーゼ (α-NAE) お よびα-ナフチルブチレートエステラーゼ (α-NBE) は本顆 粒に検出されなかったが(Figs. 1J-1L), ナフトールAS-D クロロアセテートエステラーゼ (NASDCAE) 活性がL0 とL1に認められた (Figs. 1M, 1N; Table 3)。

類円形(円形から卵円形;長径1.5 µm以下)のB型顆粒

(NG-B)は、いずれの条件のRomanowsky型染色標本においても難染色性であった。Romanowsky型染色標本では識別できないが、各種細胞化学染色の結果、NG-Bには2層からなる成層構造が認められた。NG-Bのほぼ中央に存在する類円形のL0(長径1.0 μ m以下)には α -NAE, α -NBEおよびNASDCAEが検出された(Figs. 1K-1N; Table 3)。また、NG-BにはAcP活性も認められたが、局在性の違いからNG-Bは3種類に分類された。すなわち、①L0のみにAcPが検出されるNG-B、②L0を囲む層(L1)のみに本酵素が認められるNG-B、③L0(強陽性)とL1の両方に本酵素活性が検出されるNG-Bに大別された(Fig. 1J)。③のNG-Bは主に細胞核周辺に認められた。また、細胞核周辺のNG-BにはL0がPAS陽性であり、その陽性反応は α -アミラーゼ消化後にも消失しなかった(Figs. 1F, 1G)。本顆粒はSBB染色には陰性であった。

好中球には円形または卵円形のPAS反応陽性顆粒(長径 0.8 μ m以下)が多数観察され(Fig. 1F; Table 2),細胞質 基質も弱陽性を示したが,これらの陽性部位は α -アミラー ゼ処理によって完全に消失した(Fig. 1G)。

考 察

カスザメには3種類の顆粒球が認められたが、貪食能を 有する顆粒球は好中球のみであった。好中球には2種類の 顆粒 (NG-AとNG-B) が観察され、いずれも成層構造を有 する顆粒(成層顆粒)であることが明らかとなった。アカ エイでは4種類の顆粒球が認められているが^{2.3)}, 貪食能を 有する顆粒球は好中球のみであり²,好中球には2種類の成 層顆粒が観察されている²⁶⁾。カスザメ好中球のNG-A(NG-A^{sy}) はアカエイ好中球のNG-A (NG-A^{Da}) と同様に3層構 造を有しており⁶⁾, L0とL1はNG-A^SおよびNG-A^{Da}ともにエ オシン好性であった。また、カスザメのNG-B(NG-B^{S)}も アカエイ (NG-B^{Da}) と同様にともに難染色性のL0とL1か らなる2層構造を有していた。これらのことから、カスザ メとアカエイの好中球は類似していると考えられる。しか し、両種の好中球の間に違いも認められた。NG-Aの最外 層であるL2の染色性はアカエイでは難染色性であるのに対 して⁶. カスザメでは塩基好性であった。また、NG-A^{sy}の L0とL1はSBB陽性かつNASDCAE陽性であったが、NG-A^{Da}は両染色に対して陰性である²。さらに、NG-A^{Da}のL1は ヘマトキシリン染色によって陽性反応を示すが⁶, NG-A^{Da} ではいずれの層においても同染色に対して陰性であった。

Fig. 1. Type A granulocytes (neutrophils) of Japanese angelshark. A-D, May-Grünwald (MG; A & B, PN=6; C & D, PN=1; A & C, intact cell; B & D, lysed cell). Note long-elliptic stratified granules (neutrophil granule type A, NG-A) with three-layer structure (layer, L; L0, L1 and L2) and round stratified granules (neutrophil granule type B, NG-B; crossed arrows) with two-layer structure (L0 and L1). The NG-A consists of eosinophilic core (arrows in A & B) and surrounding area (L2) of the core. The core is made up of inner (L0; arrowheads in C & D) and outer (L1) layers. The L2 shows chromophobic (A & B) or basophilic (C & D). The NG-B consists of chromophobic L0 and L1. E, phagocytosis of zymosan particles (MG; PN=2; *, zymosan particle); F, periodic acid Schiff reaction (PAS); G, PAS after digestion with α-amylase (Note positive reaction in the L0 of NG-B around nucleus); H & I, Sudan black B [H, intact cell; I, lysed cell. Note positive reaction in the core (L0 + L1) of NG-A]; J, acid phosphatase [Three types of positive NG-B are shown. Arrows, NG-B with positive L0 (negative L1); arrowheads, NG-B with positive L1 (negative L0); crossed arrows, NG-B with positive L0 (strongly positive) and L1]; K & L, non-specific esterase (K, α-naphtyl acetate esterase; L, α-naphtyl butyrate esterase. Both enzymes are localized in the L0 of NG-B); M & N, naphthol AS-D chloroacetate esterase (M, intact cell; N, lysed cell. Note positive reaction in the core (L0 + L1) of NG-A]. PN, preparation number (See Table 1). Bars=1 μm.

DN	Color and Number			DNI	Color and Number			DNI	Color and Number			
PN	LO	L1	L2	' PN	L0	L1	L2	' PN	L0	L1	L2	
1	R	_	В	28	0	0	_	55	0	-0	—	
2	<u>R</u>	R	_	29	0	—	В	56	<u>0</u>	0	_	
3	<u>R</u>	R	_	30	<u>R</u>	R	_	57	<u>O</u>	0	_	
4	R	_	в	31	R	_	В	58	0	_	В	
5	R	_	В	32	R	R	_	59	O2	_	В	
6	<u>R</u>	R	_	33	<u>R</u>	R	_	60	0	-	В	
7	<u>R</u>	R	_	34	R	_	В	61	0	_	в	
8	R	-0	_	35	R	_	В	62	_	_	В	
9	R	-0	_	36	<u>R</u>	R	—	63	_	—	в	
10	0	_	В	37	R	R	_	64	0	-0	_	
11	O1	_	В	38	R	_	В	65	O2	_	В	
12	<u>0</u>	0	_	39	R	_	В	66	R	R	_	
13	0	0	_	40	R	R	В	67	R	R	_	
14	<u>0</u>	0	_	41	R	R	В	68	R	R	_	
15	0	_	В	42	R	—	В	69	<u>R</u>	R	—	
16	<u>O</u>	0	—	43	_	—	В	70	R	-0	—	
17	<u>O</u>	0	_	44	<u>R</u>	R	В	71	R	-0	_	
18	0	_	в	45	R	_	В	72	<u>R</u>	R	—	
19	0	_	В	46	0	-0	—	73	<u>R</u>	R	—	
20	<u>O</u>	0	_	47	0	-0	—	74	R1	—	В	
21	<u>0</u>	0	—	48	<u>0</u>	0	—	75	R1	—	В	
22	O1	—	в	49	<u>O</u>	0	—	76	<u>R</u>	R	В	
23	O1	_	В	50	0	-0	_	77	<u>R</u>	R	В	
24	<u>O</u>	0	_	51	0	-0	—	78	R1	—	в	
25	<u>O</u>	0	_	52	<u>O</u>	0	—	79	R1	—	В	
26	_	_	В	53	<u>O</u>	0	_	80	<u>R</u>	R	В	
27	_	_	В	54	0	-0	_	81	R2	—	В	

Table 2. Summary of multiple Romanowsky-type staining characteristics of long-ellipticstratified granules (NG-A) with three-layer structure (inner, L0; middle, L1; outer,
L2) in the neutrophil of Japanese angelshark

PN, preparation number (See Table 1).

Color: B, light blue (basophilic); O, orange (eosinophilic); R, red (eosinophilic); -, not stained.

Number: 2, some; 1, a few; 0, not observed.

No Arabic number means many.

Under line means presumption because of difficulty to distinguish from L1.

Table 3.	Summary	of	reactions	of	Japanese	angelshark	neutrophil	to	cytochemical	tests
----------	---------	----	-----------	----	----------	------------	------------	----	--------------	-------

Test	Positive site (shape and number)						
Periodic acid Schiff reaction (PAS)	G (round or oval with or without negative surrounding, many); H						
PAS after digestion with α -amylase	G (round or oval with negative surrounding, some, eq L0 of NG-B around						
	nucleus)						
Alcian blue (pH1.0)	_						
Alcian blue (pH2.5)	_						
Toluidine blue in distilled water	Ν						
Sudan black B	G (long-spindle with negative surrounding, many, eq L0 and L1 of NG-A)						
Sudan III	_						
Oil red O	_						
Alkaline phosphatase	_						
	G [three types: round or oval with negative surrounding, many, eq L0 of NG-B;						
	round or oval with negative core, many, eq L1 of NG-B; round or oval						
Acid phosphatase	consist of positive core (strongly) and surrounding, eq entity NG-B around						
	nucleus]						
β-Glucuronidase	_						
α-Naphtyl acetate esterase	G (round or oval with negative surrounding, many, eq L0 of NG-B)						
α-Naphtyl butyrate esterase	G (round or oval with negative surrounding, many, eq L0 of NG-B)						
Naphthol AS-D chloroacetate	G (two types: round or oval with negative surrounding, many, eq L0 of NG-B;						
esterase	long-spindle with negative surrounding, many, eq L0 and L1 of NG-A)						
Peroxidase	_						

G, granular ; H, hyaloplasm ; N, nucleus ; -, not detected; NG-A, neutrophil granule type A with three-layer structure (L0, L1 and L2); NG-B, neutrophil granule type B with two-layer structure (L0 and L1); eq, equivalent to.

NG-Bにおいてもカスザメとアカエイの間で違いが認め られた。両種のNG-Bには各種ライソゾーム酵素(AcP, α -NAE, α -NBE, NASDCAE)の活性が検出されるが, NG-B^{Da}のL0にはAcP, α -NAEおよびNASDCAEが, L1に は α -NBEが局在するのに対して, NG-B^{Sy}では, α -NAE, α -NBE およびNASDCAEはL0に検出されるものの, AcP の局在性は一様ではなく, 個々のNG-B^{Sy}によって異なって いた。また, 核周辺のNG-B^{Sy}ではL0に α -アミラーゼ消化耐 性のPAS陽性反応が検出されたが, 同反応はNG-B^{Da}には 認められていない²⁰。さらに, NG-B^{Da}のL0はSBB陽性であ るが³⁰, NG-B^{Sy}ではいずれの層も陰性であった。

板鰓類の好中球は一般に好異球と呼ばれており⁸⁹⁹,顆粒 の染色性は好酸性(エオシン好性)であるとされている⁸⁾。 しかし、カスザメの好中球にはアカエイと類似した2種類 の顆粒が認められ、NG-Aにはエオシン好性の層(L0と L1)が観察される。したがって、板鰓類の好中球におい て好酸性顆粒と認識されてきた構造物は顆粒ではなく層で あると推察される。カスザメ上目にはカスザメが属するカ スザメ目の他に、ツノザメ目、キクザメ目、ノコギリザメ 目およびカグラザメ目が含まれる¹⁾。Hine and Wain(1987) は複数種のツノザメ目サメ類(オシロザメ科1種, ツノザ メ科2種,アイザメ科2種,オンデンザメ科2種,カラスザ メ科2種, ヨロイザメ科1種)の顆粒球をeosinophil, eosinophilic granulocyteおよびneutrophilic granulocyteの 3種類に分類しているが10,現在の分類基準では eosinophilic granulocyteが好中球に相当すると考えられ る。ツノザメ目サメ類のeosinophilic granulocyteの顆粒は 細長く,エオシン好性であり⁹,顆粒内部には顆粒の長軸 方向に整列した線維状の内容物が認められ、それが軸状の 桿体を形成するとされている⁹。桿体の染色性については 言及されていないが⁹, 桿体を顆粒の中心を囲む層(L0) であると仮定すると、ツノザメ目サメ類のeosinophilic granulocyteの顆粒は2層からなると推察され、アカエイや カスザメのエオシン好性層を有するEG-Aが3層であること と異なる。また、ツノザメ目サメ類にはアカエイやカスザ メで観察されるEG-Bは認められていない。ツノザメ目サ メ類である*Etomopterus baxteri*のeosinophilic granulocyte は本研究のカスザメと同様にAIP, β-GluおよびPOは陰性で あり、AcP、 α -NAEおよびNASDCAE陽性とされている¹⁰。 しかし、*E. baxteri*では陰性の α -NBEが、カスザメでは陽性 であった。

文 献

- Heinicke MP, Naylor GJP, Hedges SB: Cartilaginous fishes (Chondrichthyes). *In*: Hedges SB, Kumar S (ed) The Timetree of Life. Oxford University Press, Oxford, 320-327 (2009)
- 近藤昌和,東川将基,平山尋暉,安本信哉,高橋幸則: アカエイの好中球の形態学的および細胞化学的特徴.
 水 大 校 研 報, 65, 189-194 (2017) [Kondo M, Higashikawa S, Hirayama H, Yasumoto S, Takahashi Y: Morphological and cytochemical characteristics of neutrophils from whip stingray *Dasyatis akajei. J Nat Fish Univ*, 65, 189-194 (2017) (in Japanese with English abstract)]
- 3)近藤昌和,東川将基,平山尋暉,安本信哉,高橋幸則: アカエイの非貪食性顆粒球の形態学的および細胞化学 的特徴.水大校研報,65,195-201 (2017) [Kondo M, Higashikawa S, Hirayama H, Yasumoto S, Takahashi Y: Morphological and cytochemical characteristics of non-phagocytic granulocytes from whip stingray *Dasyatis akajei. J Nat Fish Univ*, 65, 195-201 (2017) (in Japanese with English abstract)]
- 4)近藤昌和,高橋幸則:ウナギ好中球の形態学的および 細胞化学的特徴.水大校研報,58,1-13(2009)[Kondo M, Takahashi Y: Morphological and cytochemical characteristics of neutrophil from Japanese eel Anguilla japonica. J Nat Fish Univ, 58, 1-13 (2009) (in Japanese with English abstract)]
- 5)近藤昌和,近藤啓太,高橋幸則:マハタ白血球の形態 学的および細胞化学的特徴.水産増殖,58,363-371 (2010) [Kondo M, Kondo K, Takahashi Y: Morphological and cytochemical characteristics of leukocytes in sevenband grouper *Epinephelus septemfasciatus. Aquaculture Sci*, 58, 363-371 (2010) (in Japanese with English abstract)]
- 6)近藤昌和,東川将基,安本信哉,高橋幸則:アカエイの好中球顆粒と好酸球顆粒の構造について.水大校研報,66,195-197 (2018) [Kondo M, Higashikawa S, Yasumoto S, Takahashi Y: On the structure of neutrophil granules and eosinophil granules from whip stingray *Dasyatis akajei. J Nat Fish Univ*, 66, 195-197 (2018) (in Japanese with English abstract)]

- 7) Walsh CJ, Luer CA: Elasmobranch hematology: Identification of cell types and practical applications. *In*: Smith M, Warmolts D, Thoney D, Hueter R (ed) The Elasmobranch Husbandry Manual: Captive Care of Sharks, Rays and their Relatives. Ohio Biological Survey, Ohio, 307-323 (2004)
- 8) Luer CA, Walsh CJ, Bodine AB: Recent advances in Elasmobranch immunology. *In*: Carrier JC, Musick JA, Heithaus MR (ed) Biology of Sharks and Their Relatives. CRC Press, New York, 403-420 (2012)
- 9) Hine PM, Wain JM: Composition and ultrastructure of elasmobranch granulocytes. I. Dogfishes (Squaliformes). J Fish Biol, 30, 547-556 (1987)
- Hine PM, Wain JM: The enzyme cytochemistry and composition of elasmobranch granulocytes. J Fish Biol, 30, 465-475 (1987)