直鎖脂肪酸、不飽和脂肪酸及び脂肪酸メチルエステルの二成分混合単分子膜 ーシス形二重結合とメトキシカルボニルの立体障害効果ー

松尾 洋・佐野 あゆみ・益田 晶代

Two-Component Mixed Monolayers of Long Normal Chain Fatty Acids, Unsaturated Fatty Acid, and Fatty Acids Methyl Ester. — Steric Hindrance Effects of *cis*-Double Bond and Methoxycarbonyl in the Mixed Monolayers —

Hirosi MATUO, Ayumi SANO and Masayo MASUDA

Summary

In order to clarify the effect of the steric hindrance effects of cis-double bond and methoxycarbonyl in the mixed monolayer states, two straight-chain fatty acids, unsaturated-chain fatty acid, and two fatty acids methyl ester were selected : myristic acid, stearic acid, oleic (cis-9-octadecenoic) acid, stearic acid methyl ester, and oleic acid methyl ester.

The surface pressures of myristic acid/stearic acid, myristic acid/oleic acid, myristic acid/stearic acid methyl ester , and myristic acid /oleic acid methyl ester systems were measured at various compositions and temperatures. Mean molecular area-mole fraction curves, two-dimensional phase diagrams and apparent molar energy changes were evaluated.

It was found that the steric hindrance effect of the cis-double bond in oleic acid and oleic acid methyl ester is larger than that of the methoxycarbonyl in stearic acid methyl ester and oleic acid methyl ester.

1.緒言

本研究の目的は、オレイン酸の疎水性部分に存在 するシス形二重結合、及び、脂肪酸のメチルエステ ルの親水性部分に存在するメトキシカルボニルの立 体障害効果が、混合単分子膜状態に及ぼす影響を明 らかにすることである。そのため、膜形成物質とし て、直鎖脂肪酸(ミリスチン酸、ステアリン酸)、 不飽和脂肪酸(オレイン酸)、脂肪酸のメチルエス テル(ステアリン酸メチルエステル、オレイン酸メ チルエステル)を使用した。

実験した系は、ミリスチン酸/ステアリン酸系 (直鎖/直鎖系)、ミリスチン酸/オレイン酸系(直 鎖/不飽和系)、ミリスチン酸/ステアリン酸メチ ルエステル系(直鎖/飽和メチルエステル系)、ミ リスチン酸/オレイン酸メチルエステル系(直鎖/ 不飽和メチルエステル系)の4つで、全て、ミリス チン酸を含む二成分混合単分子膜系である。なお、 ミリスチン酸を第1成分に取った。

上記の4つの系について、表面圧の組成変化と温 度変化を測定し、得られた表面圧-面積曲線(π-A曲線)より面積-組成曲線を作成した。次に、熱 力学的解析¹⁻¹⁰により、二次元の相図と、膨張膜か ら凝縮膜への相変化に伴うエネルギー変化量を算出 し、相互に比較検討することにより、シス形二重結 合、及び、メトキシカルボニルが混合単分子膜状態 に及ぼす影響を考察した。

2.実験

2-1 試料

直鎖脂肪酸は、ミリスチン酸(C14)とステアリン酸 (C18)を使用した。不飽和脂肪酸は、炭素数18でhead から9番目の炭素にシス形の二重結合を一個持つオ レイン酸(cis9)を使用した。また、脂肪酸のメチルエ ステルは、直鎖であるステアリン酸のメチルエステ ル(C18-me)と、不飽和であるオレイン酸のメチルエ ステル(cis9-me)を使用した。これらは、全てSigma社 より購入した純度99%以上の試薬である。表1に膜 形成物質の示性式を、図1に模式図を示した。

表1 膜形成物質の示性式

膜形成物質	示	性	式
ミリスチン酸	CH ₃ (CH ₂) ₁₂ COOH		
ステアリン酸	CH3(CH2) 16COOH		
オレイン酸	$CH_3(CH_2)$ $_7CH = CH(CH_2)$ $_7COOH$		
ステアリン 酸 メチルエステル	CH3 (CH2) 16COOCH3		
オレイン酸 メチルエステル	CH3 (CH2) 7CI	H = CH(CH)	I2) 7 COOCH3

図1 膜形成物質の模式図

2-2 表面圧の測定

表面圧はWilhelmy法で測定した。測定温度は、 20℃、22.5℃、25℃であり、測定中は±0.2℃の範囲 内で一定に保った。バルク溶液は、二次蒸留水と塩 酸から成るpH 3の水溶液で、展開溶媒にはベンゼン を使用した。また、不飽和脂肪酸のシスートランス 転位^{11,12)} や酸化^{13,14)} を防ぐ目的で、測定は暗視野の もと窒素気流中で行った。

2-3 熱力学的解析

バルクの寄与を考慮した熱力学的関係式⁽¹⁰⁾を利 用することにより、凝縮膜の第2成分の組成(x_2 ^{**})を 計算し、二次元の相図を作成した。さらに、膨張膜 から凝縮膜へ相変化する際の部分モルエントロピー 変化量 $\Delta s'$ と部分モルエネルギー変化量 $\Delta u'$ を算出 した。

(1) 一成分系

ミリスチン酸(C14、25℃)、ステアリン酸(C18、 20℃)、オレイン酸(cis9、20℃)、ステアリン酸メチ

図2 一成分系の表面圧一面積曲線

ルエステル (C18-me、25 \mathbb{C})、オレイン酸メチルエ ステル(cis9-me、25 \mathbb{C})の π – A曲線を図2に示した。

炭素数が14で直鎖のミリスチン酸(C14)は膨張膜か ら凝縮膜への相変化を示したが、炭素数が18で直鎖 のステアリン酸(C18)は炭化水素鎖間の凝集力が強い ため凝縮膜を形成した²¹。一方、炭素数が18でもオ レイン酸(cis-9)は、headから9番目の炭素にあるシス 形二重結合の立体障害効果により炭化水素鎖間の凝 集力が減少するため膨張膜を形成した。また、高表 面圧部分でも凝縮膜を形成することなく、占有面積 29 Å²/molecule、表面圧29.2 mN/mで膨張膜状態か ら崩壊した⁸¹。

次に、メチルエステルであるが、ステアリン酸メ チルエステル (C18-me) は、親水性部分に存在する メトキシカルボニルの立体障害効果により、直鎖の ステアリン酸(C18)より膨張すると考えられたが、ス テアリン酸(C18)とほぼ同様の凝縮した π – A 曲線を 示した。一方、オレイン酸メチルエステル(cis9-me) は、疎水性部分のシス形二重結合に起因する立体障 害効果に、さらに親水性部分のメトキシカルボニル に起因する立体障害効果が加わるため、オレイン酸 (cis9)より π – A 曲線の立ち上がり面積が遙かに大き い膨張膜を形成した。また、立体障害効果により炭 化水素鎖間のclosed packingが大きく妨げられるため、 高表面圧部分でも安定な凝縮膜を形成することなく、 オレイン酸(cis9)の崩壊圧より約13 mN/m低い表面圧 16.5 mN/m、占有面積33.5 Å²/moleculeで崩壊した。

図3に、ミリスチン酸(C14)とオレイン酸メチルエ ステル(cis9-me)の π – A 曲線の温度変化を示した。

ミリスチン酸(C14)は、20℃、22.5℃、25℃で膨張膜 から凝縮膜への相変化を示し、温度が1℃上昇する毎 に転移圧は約1.5 mN/m増加した。これは、温度の増 加とともに膜が膨張するため、凝縮するのに高い表 面圧が必要となるからである。一方、オレイン酸メ チルエステル(cis9-me)は膨張膜のまま崩壊するため、 崩壊圧の温度変化は5℃で0.4 mN/m、崩壊面積の変 化は約2Å²/moleculeであった。

(2) 二成分系

 ①ミリスチン酸(C14)/ステアリン酸(C18)系(直 鎖/直鎖系)

ミリスチン酸(C14)/ステアリン酸(C18)系の π – A 曲線(20℃)を図4に示した⁸⁾。ステアリン酸(C18)の組成の増加とともに混合単分子膜の炭化水素

鎖間の凝集力が強くなるため、転移圧は減少した。 また、転移圧はステアリン酸(C18)の組成0.175以下 の範囲で観測された。 $\pi - A$ 曲線は、転移圧直前ま ではミリスチン酸(C14)の $\pi - A$ 曲線と同様の挙動を 示した。

②ミリスチン酸(C14)/オレイン酸(cis9)系(直 鎖/不飽和系)

ミリスチン酸(C14)/オレイン酸(cis9)系のπ-A 曲線(20℃)を図5に示した⁸。炭化水素鎖中に存在 するシス形二重結合の立体障害効果により混合単分

子膜の凝集力が低下し、オレイン酸(cis9)の組成の増加とともに π – A曲線は膨張し、転移圧が高くなった。また、オレイン酸(cis9)は膨張膜の状態から崩壊するので、転移圧はオレイン酸(cis9)の組成が0.25以下の範囲でしか観察されなかった。

③ミリスチン酸(C14)/ステアリン酸メチルエステ ル(C18-me)系(直鎖/飽和メチルエステル系)

ミリスチン酸(C14)/ステアリン酸メチルエステル (C18-me)系のπ-A曲線(20℃)を図6に示した。ス テアリン酸メチルエステル(C18-me)は、ステアリン

系の表面圧一面積曲線

酸(C18)と同様に凝縮膜を形成したが(図2)、親水 性部分のメトキシカルボニルに起因する立体障害効 果により、混合単分子膜の π - A 曲線はミリスチン 酸(C14)/ステアリン酸(C18)系より膨張した。転移 圧はステアリン酸メチルエステル(C18-me)の組成が 0.4以下の範囲で観察された。また、組成0.2、0.3、 0.4の π - A 曲線は、立ち上がり面積がミリスチン酸 (C14)より大きかった。

④ミリスチン酸(C14)/オレイン酸メチルエステル (cis9-me) 系(直鎖/不飽和メチルエステル系)

ミリスチン酸(C14)/オレイン酸メチルエステル (cis9-me) 系の π – A曲線 (20 $^{\circ}$)を図7に示した。 オレイン酸メチルエステル(cis9-me) は、シス形二重 結合の立体障害効果 (オレイン酸)の他に、親水性 部分のメトキシカルボニルに起因する立体障害効果 も加わる。そのため、転移圧が観測されたのはオレ イン酸メチルエステル(cis9-me)の組成が0.13以下の 範囲であった。これは、ミリスチン酸(C14)/オレイ ン酸(cis9)系の0.25以下と比較して、約1/2であった。 また、直鎖のミリスチン酸(C14)はオレイン酸メチル エステル(cis9-me) より凝縮しているため、オレイン 酸メチルエステル(cis9-me) にミリスチン酸(C14)を 混合すると凝縮しやすくなる。そのため、ミリスチ ン酸(C14)の組成の増加とともに崩壊圧は増加した。

図7 ミリスチン酸/オレイン酸メチルエステル系 の表面圧一面積曲線

ミリスチン酸(C14)/オレイン酸メチルエステル (cis9-me) 系について、表面圧5 mN/mでの面積-組 成曲線(A-x^{*}2曲線)を図8に示した。加成性を示す直

図8 ミリスチン酸/オレイン酸メチルエステル系 の面積一組成曲線

線から大きく正にずれていた。これは、オレイン酸 メチルエステル(cis9-me)のシス形の二重結合とメ トキシカルボニルの立体障害効果により、分子同士 のclosed packingが妨害され、1分子あたりの占有面 積が予想される値より大きくなった事を示している。 次に、ミリスチン酸(C14)/ステアリン酸(C18)系、 ミリスチン酸(C14)/オレイン酸(cis9)系、ミリスチ ン酸(C14)/ステアリン酸メチルエステル(C18-me)系 との比較を図9に示した。直鎖/直鎖系であるミリ

図9 面積一組成曲線

スチン酸(C14)/ステアリン酸(C18)系では、膨張膜 (5 mN/m) と凝縮膜(22 mN/m)の両方で直線を示 したが、他の三つの系では、シス形二重結合の立体 障害効果、及び、メトキシカルボニルの立体障害効 果により、全て加成性より正のずれを示した。特に、 ミリスチン酸(C14)/ステアリン酸メチルエステル (C18-me)系は、ミリスチン酸(C14)/ステアリン酸 (C18)系が直線を示したことからは予想できないほ ど、面積-組成曲線(A-x⁵ 曲線)が大きく正にずれ、 極大を示した。

3-3 相 図

膨張膜と凝縮膜が平衡に共存するπ-A曲線の折 れ曲がり点において、凝縮膜中の第2成分の組成(x²⁺⁶) を熱力学的関係式⁽¹⁰⁾を利用して算出することによ り、二次元の相図を作成した。

①ミリスチン酸(C14)/オレイン酸メチルエステル
(cis9-me)系(直鎖/不飽和メチルエステル系)

25℃における相図を図10に示した。転移圧はオレ イン酸メチルエステル(cis9-me)の組成の増加ととも に増加した。これは、オレイン酸メチルエステル (cis9-me)のシス形二重結合、及び、メトキシカルボ ニルの立体障害効果により炭化水素鎖間の凝集力が 妨げられるため、混合単分子膜が凝縮するのにより 高い表面圧を必要とするからである。この系は、二 成分が膨張膜中でも凝縮膜中でも混和しており、異 種分子間の相互作用が同種分子間の相互作用より弱 い系である。

相図が高い表面圧領域で完結していないのは、混 合単分子膜が膨張膜状態から崩壊するためである。 崩壊曲線を点線で示した。ミリスチン酸がrichな組成 範囲では、膨張膜状態から凝縮膜状態への相変化を 示し、混合単分子膜は凝縮膜状態から崩壊した。一

図10 ミリスチン酸/オレイン酸メチルエステル系 の相図

方、相変化を示さなかった組成範囲では、混合単分 子膜は膨張膜状態から崩壊した。崩壊曲線より高い 表面圧領域は、3次元の多分子層領域である。

②ミリスチン酸(C14)/ステアリン酸(C18)系(直 鎖/直鎖系)との比較

ミリスチン酸(C14)/ステアリン酸(C18)系の15℃ における相図を図11に示した⁸⁾。

シス形二重結合とメトキシカルボニルを持つオレイ ン酸メチルエステル(cis9-me)と、直鎖のステアリ ン酸を比較した。炭化水素鎖長の長いステアリン酸 (C18)は凝集力が強いため、混合単分子膜の転移圧は ステアリン酸(C18)の組成の増加とともに減少し、下 向きの相図を示した。これは、シス形二重結合とメ トキシカルボニルの立体障害効果により上向きの相 図を示したミリスチン酸(C14)/オレイン酸メチルエ ステル(cis9-me)系(直鎖/不飽和メチルエステル 系)とは対照的である。

③ミリスチン酸(C14)/ステアリン酸メチルエステ ル(C18-me)系(直鎖/飽和メチルエステル系)との 比較

ミリスチン酸(C14)/ステアリン酸メチルエステル (C18-me)系(直鎖/飽和メチルエステル系)の25℃ における相図を図12に示した。シス形二重結合とメ

図12 ミリスチン酸/ステアリン酸メチルエステル 系の相図

トキシカルボニルを持つオレイン酸メチルエステル (cis9-me)と、メトキシカルボニルを持つステアリ ン酸メチルエステル(C18-me)を比較した。この系は 下向きの相図を示した。これは、ステアリン酸メチ ルエステル(C18-me)にはメトキシカルボニルに起因 する立体障害効果が存在するが、それよりも炭化水 素鎖間の凝集力の方が優勢であることを示してい る。

ミリスチン酸(C14)/ステアリン酸(C18)系⁸⁾では、 膨張膜はステアリン酸(C18)の組成0.2までしか観察 されなかったが、ミリスチン酸(C14)/ステアリン酸 メチルエステル(C18-me)系では、メトキシカルボニ ルの立体障害効果により膨張しているため、膨張膜 はステアリン酸メチルエステル(C18-me)の組成0.4ま で観測された。

④ミリスチン酸(C14)/オレイン酸(cis9)系(直 鎖/不飽和系)との比較

ミリスチン酸(C14)/オレイン酸(cis9)系(直鎖/ 不飽和系)の12.5℃における相図を図13に示した⁸⁾。 シス形二重結合とメトキシカルボニルを持つオレイ ン酸メチルエステル(cis9-me)と、シス形二重結合

のみのオレイン酸(cis9)の比較である。つまり、疎水 性部分の炭化水素鎖が等しく、親水性部分のメトキ シカルボニルの立体障害効果が異なる系である。ま た、ミリスチン酸(C14)/オレイン酸メチルエステル (cis9-me) 系の相図との重なりを防ぐため12.5℃とし た。この系は上向きの相図を示したが、メトキシカ ルボニルの立体障害効果のため、膨張膜はオレイン 酸(cis9)の組成0.4まで観測された。

3-4 エネルギー変化量

膨張膜から凝縮膜へ相変化する際のエネルギー変 化量Δu⁷を熱力学的関係式¹¹⁰⁷より算出した。Δu⁷ の値が負ということは、凝縮膜状態のエネルギーの 値が膨張膜状態のエネルギーの値より低い事を示し ている。また、エネルギー変化量については、ミリ スチン酸(C14)/オレイン酸メチルエステル(cis9-me) 系(直鎖/不飽和メチルエステル系)を中心に据え て他の系と比較した。

①ミリスチン酸(C14)/オレイン酸メチルエステル
(cis9-me) 系(直鎖/不飽和メチルエステル系)

エネルギー変化量ー組成曲線を図14に示した。オ レイン酸メチルエステル(cis9-me)の組成の増加に 伴ってエネルギー変化量は単調に減少した。これは オレイン酸メチルエステル(cis9-me)のシス形二重 結合とメトキシカルボニルの立体障害効果のため、 オレイン酸メチルエステル(cis9-me)の組成の増加 に伴って、ミリスチン酸(C14)とオレイン酸メチルエ ステル(cis9-me)の炭化水素鎖間の相互作用(凝集 力)が妨げられるため、相変化する際の膨張膜状態 のエネルギーの値と凝縮膜状態のエネルギーの値の 差が小さくなるからである。換言すると、ミリスチ ン酸(C14)にオレイン酸メチルエステル(cis9-me)を 混合すると膜が膨張し、膜形成物質分子間のpacking の状態が粗になることを示している。異種分子間の 相互作用が同種分子間の相互作用より弱い系である。

図14 ミリスチン酸/オレイン酸メチルエステル系 のエネルギー変化量

②他の系との比較

ミリスチン酸(C14)/ステアリン酸(C18)系(直 鎖/直鎖系)、ミリスチン酸(C14)/オレイン酸(cis9) 系(直鎖/不飽和系)、ミリスチン酸(C14)/ステア リン酸メチルエステル(C18-me)系(直鎖/飽和メチ ルエステル系)、ミリスチン酸(C14)/オレイン酸メ チルエステル(cis9-me)系(直鎖/不飽和メチルエ ステル系)についてのエネルギー変化量を図15に示 した。

図15 エネルギー変化量

ミリスチン酸(C14)/ステアリン酸(C18)系(直 鎖/直鎖系)とミリスチン酸(C14)/ステアリン酸メ チルエステル(C18-me)系(直鎖/飽和メチルエステ ル系)では、第2成分の組成の増加とともにエネル ギー変化量が増大した。これは、相変化する際の膨 張膜状態のエネルギーの値と凝縮膜状態のエネルギ ーの値の差が大きくなることを示している。異種分 子間の相互作用が同種分子間の相互作用より強い系 である。つまり、混合すると膜が凝縮し、膜形成物 質分子間のpackingの状態が密になることを示してい る。また、エネルギー曲線の傾きは、ミリスチン酸 (C14)/ステアリン酸(C18)系の方がミリスチン酸 (C14)/ステアリン酸メチルエステル(C18-me)系より 大きかった。これは、メトキシカルボニルを持たな いステアリン酸(C18)の方がステアリン酸メチルエス テル(C18-me)より凝縮効果が大きいことを示してい る。

次に、ミリスチン酸(C14)/オレイン酸(cis9)系 (直鎖/不飽和系)とミリスチン酸(C14)/オレイン 酸メチルエステル(cis9-me) 系(直鎖/不飽和メチ ルエステル系)では、第2成分の組成の増加ととも にエネルギー変化量が減少した。これは、相変化す る際の膨張膜状態のエネルギーの値と凝縮膜状態の エネルギーの値の差が小さくなることを示してい る。異種分子間の相互作用が同種分子間の相互作用 より弱い系である。つまり、混合すると膜が膨張し、 膜形成物質分子間のpackingの状態が粗になることを 示している。また、エネルギー曲線の低下の度合い は、ミリスチン酸(C14)/オレイン酸メチルエステル (cis9-me) 系の方がミリスチン酸(C14)/オレイン酸 (cis9)系より大きかった。これは、シス形二重結合と メトキシカルボニルを持つオレイン酸メチルエステ ル(cis9-me)の立体障害効果が、シス形二重結合の みのオレイン酸(cis9)より大きいことを示している。

以上の結果から、図16に示したが、立体障害効果

C18 C18-me *cis* 9 *cis* 9-me 図16 立体障害効果の大きい順

の大きい順は、オレイン酸メチルエステル(cis9me) >オレイン酸(cis9)>ステアリン酸メチルエス テル(C18-me)>ステアリン酸(C18)の順であった。こ れより、headから9番目の炭素にあるシス形の二重結 合の立体障害効果の方がメトキシカルボニルの立体 障害効果より、混合単分子膜状態に及ぼす影響が大 きいことが分かった。

本研究の一部は、日本家政学会中国・四国支部研 究発表会(平成12年10月8日、山陽学園短期大学、 岡山市)で発表した。

参考文献

- 1) K.Motomura, J. Colloid Interface Sci., 48, 307 (1974).
- 2) K.Sekita, M.Nakamura, K.Motomura and R.Matuura, *Mem. Fac. Sci. Kyushu Univ.*, C10, 5(1976).
- 3) K.Motomura, Adv. Colloid Sci., 12, 1 (1980).
- 4) H.Matuo, K.Motomura and R.Matuura, *Chem. Phys. Lipids*, 28, 385 (1981).
- 5) H.Matuo, K.Motomura and R.Matuura, *Chem. Phys. Lipids*, 28, 281 (1981).
- 6) H.Matuo, T.Mitsui, K.Motomura and R.Matuura, Chem. Phys. Lipids, 29, 55 (1981).
- 7) 松尾 洋: 山口女子大学家政学部研究報告、21, 55 (1995).
- 8) 松尾 洋、大久保明恵、太田雅子:山口県立大 学家政学部研究報告、23,1 (1997).
- 9) 松尾 洋、大矢裕子、清都智美:山口県立大学 生活科学部研究報告、24,31 (1998).
- 10) 松尾 洋、関谷陽子、達 千英、増井恭子:山 口県立大学大学院論集、1,147 (2000).
- 11) T.Seki and T.Tamaki, Chem. Lett., 1739 (1993).
- 12) H.Menzel, Macromol. Chem. Phys., 195, 3747 (1994).
- 13) N.K.Adam and G.Jessop, Proc. Roy. Soc.(London), A112, 362 (1926).
- 14) A.H.Hughes and E.K.Rideal, Proc. Roy. Soc.(London), A140, 253 (1933).10)