論文:

NDBオープンデータを利用するための教材作成の試み

畔津 忠博¹⁾, 増成 直美²⁾, 水津 久美子²⁾

An Attempt of Preparation of Teaching Materials to Utilize NDB Open Data

AZETSU Tadahiro¹⁾, MASUNARI Naomi²⁾, SUIZU Kumiko²⁾

要旨:本稿では、NDBオープンデータを効率的に処理するための教材作成の試みについて報告する。教材は、 NDBオープンデータの説明と表計算ソフトのExcelで利用できるプログラミング言語であるVisual Basic for Applications(VBA)を用いたデータ処理の解説から構成される。また、作成した教材では、Excelのワークシー ト上での作業と比較しながらVBAを用いる利点について理解してもらうように配慮した。最後にVBAに関連 した問題を解いてもらい、教材の理解度を確認した。

Abstract: In this article, we describe an attempt to prepare teaching materials to efficiently process NDB open data. The teaching materials consist of explanations of NDB open data and instructions of data processing using Visual Basic for Applications (VBA), a programming language that can be used with the spreadsheet software Excel. In addition, the teaching materials allow students to understand the advantages of using VBA by comparing it to working with Excel worksheets. Finally, we asked them to solve VBA-related problems and confirmed their understanding of the teaching materials.

Key words: NDB open data, teaching material preparation, Visual Basic for Applications キーワード: NDBオープンデータ, 教材作成, VBA

1 はじめに

NDBオープンデータとは、厚生労働省が公開 しているレセプト情報、特定健診情報のことであ る^[1]。今回は、第5回公表データのうち、特定健 診情報(平成29年度分)を題材とする。そこで は、「BMI」、「AST」、「ALT」、「HbA1c」、「HDL コレステロール」、「LDLコレステロール」、「y -GT」、「ヘモグロビン」、「拡張期血圧」、「眼底検 査」、「空腹時血糖」、「収縮期血圧」、「中性脂肪」、 「尿蛋白」、「尿糖」、「腹囲」が公開されている。 本稿は、このデータを効率的に処理するための 教材作成の試みについて報告する。NDBオープン データは表計算ソフトのExcel形式のデータとして 公開されているので、データ処理はExcelを利用す ることが直接的で有効である。また、Excelでは、 プログラミング言語の1つであるVisual Basicが利 用可能である。Excel内で利用できるVisual Basicは、 アプリケーションソフトウェア用に改良されたもの で、Visual Basic for Applications(VBA)と呼ばれて いる^[23]。このVBAを利用すると、さらに効率的な 処理が期待される。

VBAを短時間で学ぶことが教材の主目的である

¹⁾ 国際文化学部文化創造学科

²⁾ 看護栄養学部栄養学科

が、単にプログラミング言語を学ぶだけではなく、 NDBオープンデータの分析^[46]を行うという学習目 標を明確にすることで、学習意欲も増すことが期待 される。また、教材という形にすれば、多くの人が 利用できるオープンデータの趣旨にも合うと考えら れる。

2 作成した教材

NDBオープンデータの特定健診情報に関しては、 一定のフォーマットに従ってデータが公開されてい る。そのため、VBAの基本的事項を理解するだけ でも、多くのデータを短時間で有効に活用すること ができる。教材では、変数、配列、演算子、繰り返 し処理、オブジェクトの操作といった今回のNDB オープンデータの処理に関連する内容を取り上げ、 Excelのワークシートでの処理と比較することで、 VBAの利点が理解できるようにした。

2.1 基本的事項の整理

まず、画面に文字を表示させるプログラムを作成 することを目標として、エディタの使い方、プログ ラムの実行と修正、セキュリティレベルの設定など を説明する。

次に、データの記憶領域として変数、配列の説明 を行う。このとき、表計算ソフトの学習の一環とし て、セルとの類似性を指摘する。また、値を変数に 代入する方法として代入演算子について触れる。

さらに、配列を効果的に扱う方法と関連付けて、

プログラムの順番を制御する方法であるFor文また はWhile文を用いた繰り返し処理について説明する。 また、制御命令のもう1つの重要な命令であるIf文 またはSelect文を用いた条件分岐についても触れる。

2.2 オブジェクトの操作

他のプログラミン言語に対するVBAを用いる利 点としては、Excelの様々な機能が利用できること が挙げられる。例えば、ブック、ワークシート、セ ルなどのオブジェクトを操作するための様々な命令 があるが、特に、セルを参照するCells命令と、セ ル範囲を参照するRange命令を重点的に説明する。

また、合計を求めるSUM関数や平均を求める AVERAGE関数など、多くのワークシート関数が VBAにおいても利用可能であることを説明し、さ らに、関数では多くの場合、セル範囲を引数として 指定する必要があるが、上記のRange命令とCells命 令で指定することが可能であることを理解してもら う。また、ワークシート関数の機能にないような処 理を行う方法として、ユーザー定義関数についても 言及する。

2.3 NDBオープンデータへの応用

以上で学習したことを基に、VBAをNDBオープ ンデータに適用する方法について例を挙げる。図1 は特定健診情報に関するNDBオープンデータの1つ であり、都道府県、年齢ごとにクロス集計された BMIデータである。年齢の範囲を40歳から74歳まで

	A	в	С	D	E	F	G	н	1	J	к	L	м	N	0	P	Q	R	
1	特定體診(BMI)	:H29年度 ※集計結果が10:	未満の場合は	[-]で表示(10)未満の箇所り	i1箇所の場合	は10以上の最	小値を全て「・	」で表示)										
2										全	体								
3		检索体照用	男									文							
4	都道府県名	(kg/m ¹)	40~44歲	45~49歳	50~54歳	55~59歳	60~64歲	65~69歳	70~74歲	中計	40~44歳	45~49歳	50~54歲	55~59歳	60~64歳	65~69歳	70~74歲	ΦĦ	
5			人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	
б		30.0以上	8,934	9,133	6,897	5,538	3,811	2,565	1,307	38,185	3,909	4,131	3,507	3,018	2,473	2,696	2,188	21,922	
7		25.0以上30.0未満	28,755	31,129	27,842	27,636	24,229	20,705	13,368	173,664	9,648	11,106	10,688	10,613	10,328	13,091	11,308	76,782	
8	北海道	20.0以上25.0未満	52,188	51,186	44,544	45,216	39,263	35,835	25,454	293,686	33,500	35,679	33,313	31,930	30,210	36,404	29,913	230,949	
9		185以上20.0未満	6,156	5,481	4,516	4,438	3,843	3,406	2,362	30,202	13,845	12,595	11,337	9,992	8,073	8,182	6,041	70,065	
10		18.5未満	2,533	2,122	1,777	1,880	1,769	1,531	1,105	12,717	9,192	8,040	7,725	7,207	5,645	5,518	4,104	47,431	
11		30.0以上	2,441	2,208	1,579	1,238	871	678	434	9,449	1,174	1,242	1,053	982	911	969	777	7,108	
12		25.0以上30.0未満	7,190	7,570	7,234	7,278	6,302	6,000	4,220	45,794	2,783	3,258	3,491	3,778	4,111	5,210	4,509	27,140	
13	青森県	20.0以上25.0未満	12,323	12,763	11,795	12,557	11,087	11,173	8,419	80,117	8,719	9,412	9,640	10,195	10,421	12,702	10,259	71,348	
14		185以上20.0未満	1,431	1,419	1,224	1,346	1,166	1,129	853	8,568	3,179	3,000	2,717	2,705	2,380	2,457	1,783	18,221	
15		18.5未満	554	547	495	588	492	525	432	3,633	1,934	1,816	1,662	1,803	1,513	1,540	1,181	11,449	
16		30.0以上	2,329	2,240	1,705	1,394	906	734	472	9,780	1,161	1,180	1,031	1,016	902	1,074	862	7,226	
17		25.0以上30.0未満	7,389	7,764	7,507	7,735	6,693	6,932	5,170	49,190	2,747	3,232	3,365	3,868	4,225	5,523	5,026	27,986	
18	岩手県	20.0以上25.0未満	13,293	12,760	12,281	13,312	11,827	12,306	9,804	85,583	9,100	9,557	9,296	10,203	10,601	13,528	11,279	73,564	
19		185以上20.0未満	1,699	1,482	1,403	1,523	1,338	1,197	892	9,534	3,216	2,911	2,663	2,703	2,398	2,680	1,983	18,554	
20		185未満	698	635	563	680	564	545	450	4,135	2,134	1,846	1,822	1,848	1,598	1,711	1,425	12,385	

図1. NDBオープンデータ(BMI)

	А	в	С	D	Е	F	G	н	I	J	к	L	м	N	0	Р	Q	R
1	特定健診(収縮	餠加圧):H29年度	※集計結果が10)未満の場合	t「-」で表示(10未満の箇戸	所が1箇所の均	合は10以上	の最小値を全	て「一」で表示))							
2										全	体							
3		検査値階層 (mmHg)		男										3	t t			
4	都道府県名		40~44歳	45~49歳	50~54歳	55~59歳	60~64歳	65~69歳	70~74歳	中計	40~44歳	45~49歳	50~54歳	55~59歳	60~64歳	65~69歳	70~74歳	中計
5			人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数	人数
6		180以上	276	395	470	651	747	735	463	3,737	131	239	287	315	376	482	472	2,302
7		160以上180未満	1,516	2,231	2,557	3,377	3,797	3,810	2,694	19,982	572	985	1,330	1,583	1,861	2,784	2,687	11,802
8	北海道	140以上160未満	8,969	11,713	12,868	15,817	16,149	15,998	11,313	92,827	2,903	4,829	6,354	7,353	8,791	12,822	11,686	54,738
9	76/平/巴	130以上140未満	15,058	16,931	16,440	17,526	16,170	15,116	11,140	108,381	5,132	7,292	8,778	9,729	10,728	14,876	13,615	70,150
10		120以上130未満	28,066	27,459	23,093	21,862	18,052	15,038	10,023	143,593	12,791	14,982	14,920	14,921	14,230	16,738	13,579	102,161
11		120未満	44,679	40,315	30,147	25,476	17,998	13,345	7,963	179,923	48,555	43,220	34,895	28,851	20,744	18,187	11,513	205,965
12		180以上	70	85	104	141	139	132	117	788	37	44	56	65	84	109	84	479
13		160以上180未満	359	478	590	769	831	854	692	4,573	150	245	370	390	472	704	664	2,995
14	表选旧	140以上160未満	2,199	2,890	3,173	4,100	4,022	4,280	3,359	24,023	788	1,260	1,661	2,244	2,709	3,904	3,839	16,405
15	FI 44-213	130以上140未満	4,613	5,210	4,926	5,285	4,750	4,977	3,711	33,472	1,677	2,391	2,869	3,392	3,951	5,354	4,670	24,304
16		120以上130未満	6,564	6,551	6,039	5,775	4,830	4,546	3,367	37,672	3,268	3,811	4,254	4,508	4,700	5,637	4,564	30,742
17		120未満	10,133	9,293	7,495	6,935	5,344	4,716	3,110	47,026	11,869	10,976	9,353	8,864	7,419	7,171	4,691	60,343
18		180以上	64	94	120	156	148	161	105	848	40	60	76	70	108	147	129	630
19		160以上180未満	430	610	653	950	938	1,038	797	5,416	188	295	380	476	637	920	895	3,791
20	出土田	140以上160未満	2,819	3,469	3,734	4,687	4,694	5,142	4,074	28,619	875	1,380	1,955	2,476	3,251	4,961	4,794	19,692
21		130以上140未満	4,325	4,723	4,839	5,347	4,825	5,051	4,012	33,122	1,649	2,311	2,671	3,392	3,925	5,365	5,054	24,367
22		120以上130未満	7,118	6,665	6,325	6,378	5,176	5,125	3,951	40,738	3,560	4,091	4,180	4,788	4,763	5,919	4,860	32,161
23		120未満	10,651	9,320	7,787	7,126	5,546	5,196	3,849	49,475	12,047	10,589	8,914	8,434	7,040	7,205	4,844	59,073

図2. NDBオープンデータ(収縮期血圧)

とし男女別に5歳刻みで7階層に分けており、検査 値であるBMIを5階層に分けている。他の収縮期血 圧データ(図2)や空腹時血糖などでもフォーマッ トはほぼ一緒で、検査値である収縮期血圧や空腹時 血糖の階層数が異なるだけである。そのため、BMI データを処理するプログラムを作成すれば、他の データにもほぼそのまま適用できる。

まず、今回のデータ処理の目的である年齢調整の 流れを説明する。最初に、BMIデータにおいて、健 康寿命に悪影響を及ぼすと考えられる検査値の範囲 を設定し、その人数をリスク人口として算出する。 例えば、BMIが25以上をリスクと考えたとき、北海 道の男性の40~44歳を対象とすると、リスク人口は、

28755+8934=37689 となる。また、リスク割合 をリスク人口/全体の人口とすると、

次に、NDBオープンデータが採用している年齢 区分における日本の人口を図3に示す。このデータ では、40-44歳の人口は4914018となっているが、こ れにさきほどのリスク割合をかけたものを調整リス ク人口とすると、

4914018 × 0.382373232… = 1878988.94… となる。これを全年齢区分に適用した結果が図4となる。

	A	в	С	D	E	F	G
1		BMI			収縮期血圧	E	
2		男	女	計	男	女	計
3	北海道	0.382017	0.221907	0.300733	0.226146	0.159827	0.192478
4	青森県	0.371692	0.252394	0.311128	0.20406	0.144158	0.17365
5	岩手県	0.371198	0.250283	0.309813	0.223364	0.167043	0.194771
6	宮城県	0.369857	0.232416	0.300082	0.215368	0.154752	0.184595
7	秋田県	0.363783	0.245596	0.303782	0.255082	0.179567	0.216745
8	山形県	0.342412	0.232926	0.286829	0.231462	0.166328	0.198395
9	福島県	0.370905	0.252422	0.310754	0.211106	0.156514	0.183391
10	茨城県	0.355955	0.225372	0.289662	0.199933	0.147842	0.173488
11	栃木県	0.346791	0.226218	0.285579	0.219492	0.162115	0.190363
12	群馬県	0.330579	0.213484	0.271133	0.219932	0.168714	0.19393
13	埼玉県	0.339293	0.20493	0.271.08	0.207666	0.156416	0.181648
14	千葉県	0.351573	0.205232	0.277279	0.194674	0.14887	0.17142
15	東京都	0.333197	0.182379	0.256631	0.181471	0.129362	0.155016
16	神奈川県	0.330205	0.181614	0.25477	0.18297	0.133549	0.15788
17	新潟県	0.302395	0.191435	0.246063	0.203687	0.138851	0.170771
18	富山県	0.328332	0.194207	0.26024	0.197809	0.145402	0.171204
19	石川県	0.324268	0.192147	0.257194	0.213053	0.151387	0.181747
20	福井県	0.325296	0.192762	0.258012	0.225602	0.162873	0.193756

図5. VBAを用いた結果

すべての年齢区分で調整リスク人口を合計したもの を全調整リスク人口とし、全日本人人口も同様にす べての年齢区分で日本の人口を合計したものと定義 する。また、全調整リスク割合を下記3つのもので 定義する。

- 全調整リスク割合(男) = 全調整リスク人口(男) / 全日本人人口(男)
- 全調整リスク割合(女) = 全調整リスク人口(女) / 全日本人人口(女)
- ・ 全調整リスク割合(男女計) = 全調整リスク人口 (男女計) / 全日本人人口(男女計) この3つを計算したものを図4の右側に示す。

このような計算はExcelの数式で簡単に行うこと ができるが、都道府県ごとに同じことを何度も繰り 返す必要がある。実際にExcelのワークシート上で この作業を行ってもらい作業量を確認した上で、こ の操作をVBAにより記述することで負担が軽減さ れることを理解してもらうようにする。教材では、 全調整リスク割合を都道府県ごとに求めるプログラ ムの作成を教材の最終目標としている。プログラム から得られる結果を図5に示す。

2.4 VBAとLibreOffice Basicとの比較

Excelを含むMS-Officeは、日常的な業務でよく用 いられる文書作成ソフトや表計算ソフトなど複数 のアプリケーションソフトが統合されたものであ り、オフィススイートと呼ばれている。これと類似 した機能をもつソフトとして、オープンソースの LibreOfficeがある^[7]。無料で使用できるため、遠隔 授業等で個人のパソコンしか使用できない状況でも、 インストール方法さえ指示すれば全員がソフトウェ アを利用することができる。

また、LibreOfficeで利用できるプログラミング言 語としてLibreOffice Basicがあり、LibreOfficeの表 計算ソフトであるCalcにおいてVBAと同様の使い 方ができる。本稿の2.1の基本事項の整理の内容は、 そのままLibreOffice Basicでも当てはまり、そこで

	A	в	С	D	E	F	G	н	I	J	К	L	М	N	0	Р	Q	R
1						ļ.	5				女							
2		Ī	40~44歳	45~49歳	50~54歲	55~59歳	60~64歲	65~69歳	70~74歳	中計	40~44歳	45~49歳	50~54歲	55~59歳	60~64歲	65~69歳	70~74歳	中計
3		日本人人口	4914018	4354877	3968311	3729523	4151119	4659662	3582440	29359950	4818200	4307927	3961985	3785723	4303891	4984205	4113371	30275302
								図3.	日本の	基準人								

	A	в	c	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	s	т	U	v
1	特定健診(EMI)	H29年度 ※券	長計結果が1	0未満の場合	合は「-」で表	示(10未満	の箇所が1	「所の場合」	ま10以上のi	最小値を全て	「一」で表示)										
2										Ê	体											
3							r,							3	τ							
4	都道府県名		40~44歳	45~49歳	50~54歲	55~59歲	60~64歳	65~69歲	70~74歲	Ф 8 †	40~44歳	45~49歳	50~54歲	55~59歲	60~64歳	65~69歳	70~74歲	中111	全	調整リスク人		
5			人数	人数	人数	人数	人数	人数	人数	人数	人数	男	女	81								
6		リスク割合	0.382373	0.406477	0.405943	0.391628	0.384557	0.363355	0.336613	0.386266	0.193412	0.212953	0.213234	0.217192	0.225652	0.239593	0.252007	0.220741				
7		日本人人口	4914018	4354877	3968311	3729523	4151119	4659662	3582440	29359950	4818200	4307927	3961985	3785723	4303891	4984205	4113371	30275302	29359950	30275302	59635252	
8	北海道	調整リスク人口	1878969	1770159	1610909	1460585	1596343	1693113	1205897	11340743	931896.3	917386	844830.7	822230.6	971180.7	1194179	1036600	6682992	11215996	6718302.7	17934298	
9																			0.3820169	0.221907	0.3007332	全調整リスク割合
10																						
11		リスク割合	0.402314	0.396968	0.394724	0.370148	0.360127	0.342374	0.32414	0.374374	0.222441	0.240282	0.244788	0.244567	0.259723	0.270085	0.285591	0.25319				
12		日本人人口	4914018	4354877	3968311	3729523	4151119	4659662	3582440	29359950	4818200	4307927	3961985	3785723	4303891	4984205	4113371	30275302	29359950	30275302	59635252	
13	青森県	調整リスク人口	1976979	1737544	1566387	1380476	1494928	1595346	1161212	10991602	1071764	1035117	969846.5	925861.5	1117819	1346158	1174741	7665404	10912872	7641306.9	18554179	
14																			0.3716925	0.2523941	0.3111277	全調整リスク割合
15																						

図4. 表計算ソフトによるNDBオープンデータの処理の例

問. NDB オープンデータの BMI の結果が示された下図において、北海道の 40~44 歳の BMI が 30 以上の人数 8934 が格納さ れているセルの場所を、Cells 命令の Cells(1,1)や Cells(1,2)などの表現を用いて、下記の選択肢から答えること。

	1	4	в	0	D	-
	1	特定確認USA	11129年度 ※集計結果が11	2未清の場合)	ま 」で表示ぐ	10未満の箇所:
	2					
	3		指要信恋菌			
		都道府県沿	$(k = 12 \text{ fm}^2)$	40.544-5	45-046 b	50:54-56
	4		(43) (11)	10 1123	10 10 22	00 0122
	- 5-			人教	人教	人茲
	ŝ		3011以上	8.934	9,188	6,867
	7		25.0.以上80.0未滿	28,755	81,129	27,849
	8	北海道	20.0以上25.0人浦	52,188	E1,186	47,547
	- 9		13.5以上20.0未満	6,136	5 481	/ 516
	10		185未満	2,533	2,122	1000
	11		30 C-4, F	9,441	2,208	1,579
	12		25.0以上30.0人浦	7,190	7,870	7,284
	18	青森県	20.0以上25.0未満	12,020	12,760	11 795
1 つ選択		1	ſ			
$(C_{-1})_{-1}$	1.(0	F) (1-11-(7	$2) (C_{-11}(2, c))$			
Cells(6,3) Cells(5,2) Cells(5,2) Cells(5,2) Cells(5,3) Cel	IS(2,	o) = Cens(7,	3) Cells(3,6)			

図6. 問題A

問.BMI_3 のプログラムでは、[14]の For で都道府県の繰り返し処理を行っているが、これに対応する Next はどれか。下記の 選択肢から行頭の番号を選択すること。 Sub BMI 3 [1] Dim i As Integer, j As Integer [2] Dim total As Double, risk As Double [3] Dim sum As Double, sum_m As Double, sum_f As Double [4] Dim sum_risk As Double, sum_risk_m As Double, sum_risk_f As Double [5] Dim risk_p(15) As Double, population(15) As Double [6] Dim ws1 As Worksheet, ws2 As Worksheet [7] Set ws1 = ActiveWorkbook.Sheets("BMI") [8] Set ws2 = ActiveWorkbook.Sheets("results") [9] ws2.Select [10]ws2.Cells(1, 2) = "BMI" [11]ws2.Cells(2, 2) = "男" [12]ws2.Cells(2, 3) = "女" [13]ws2.Cells(2, 4) = "=+" [14]For j = 1 To 47 [15] ws2.Cells(j + 2, 1) = ws1.Cells(5 * (j - 1) + 6, 1) [16] For i = 1 To 16 [17] total=WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6+4, i+2))) [18] risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6+1, i+2))) [19] population(i - 1) = Worksheets("basic_data").Cells(3, i + 2) [20] risk_p(i - 1) = risk / total * population(i - 1) [21] Next [22] sum = 0: sum_m = 0: sum_f = 0 [23] sum_risk = 0: sum_risk_m = 0: sum_risk_f = 0 [24] For i = 0 To 6 [25] sum = sum + population(i) + population(i + 8) [26] sum_risk = sum_risk + risk_p(i) + risk_p(i + 8) [27] sum_m = sum_m + population(i) [28] sum_risk_m = sum_risk_m + risk_p(i) [29] sum f = sum f + population(i + 8)[30] sum_risk_f = sum_risk_f + risk_p(i + 8) [31] Next [32] ws2.Cells(j + 2, 2) = sum_risk_m / sum_m [33] ws2.Cells(j + 2, 3) = sum_risk_f / sum_f [34] ws2.Cells(j + 2, 4) = sum_risk / sum [35]Next End Sub 1 つ選択 [21][31] [35]

図7. 問題B

問. BMI_3 のプログラムで、リスク人口を計算しているところは[18]の risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6+1, i+2)))である。ここでは Sum 関数の引数として Range 命令により BMI25 以上のセル範囲 を指定している。これを BMI20 以上のセル範囲にしたときの命令に修正したものを下記の選択肢から1つ選ぶこと。

しつ選択

risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6, i+2))) risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6+2, i+2))) risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6+3, i+2))) risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6, i+2), ws1.Cells(5*(j-1)+6+4, i+2)))

図8. 問題C

問. BMI_3 のプログラムで、上記と同様に[18]のリスク人口を計算する命令を、今度は痩身傾向を調べるため、リスク人口を BMI20 未満に設定した場合に修正したものを下記の選択肢から1つ選ぶこと。

1 つ選択

risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6+2, i+2), ws1.Cells(5*(j-1)+6+3, i+2)))
risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6+2, i+2), ws1.Cells(5*(j-1)+6+4, i+2)))
risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6+3, i+2), ws1.Cells(5*(j-1)+6+4, i+2)))
risk = WorksheetFunction.Sum(Range(ws1.Cells(5*(j-1)+6+3, i+2), ws1.Cells(5*(j-1)+6+5, i+2)))

図9. 問題D

作成したプログラムは、LibreOffice Basicにおいて も変更せずにそのまま実行できる。ただし、2.2の オブジェクトの操作の内容は変更が必要であり、特 にセルを参照する命令が異なる点に注意が必要であ る^[8]。

今回の教材はLibreOfficeへの対応は行っていない が、オープンデータとの親和性を考慮した場合には LibreOfficeなどのオープンソースのソフトウェアの 使用を前提に考えることも重要であるため、今後の 課題として検討したい。

3 教材を用いた授業の実施

教材を用いて1コマ90分の授業を遠隔で行った。 教材の理解度を確認するため、授業の終わりの15 分程度で、VBAに関連した問題を解いてもらっ た。問題は10問用意したが、その中でNDBオープ ンデータの処理に直接関連のある4つの問題を図6か ら図9に示す。

問題AはCells命令によるセルの参照、問題Bは For文による2重ループ、問題Cと問題DはRange命 令によるセル範囲の指定について、それぞれの理解 度を確認するものである。

問題の回答者数は24人で、正解率は、問題Aで 45.8%、問題Bで37.5%、問題Cで75.0%、問題Dで 33.3%であった。問題の中で特に重要なものが問題 Cであり、これが理解できればリスクとして扱う検 査値の範囲を自由に変更できる。Range命令に関し ては、授業で重点的に説明したので、正解率が高く なったと思われる。ただし、より応用的な問題であ る問題Dに関しては正解率が低く、改善が必要であ ることもわかった。

また、授業後に感想を記入してもらった。その中 で肯定的な意見として、

•BMIを25以上を選択するのも、20未満を選択す るのもプログラムのセル選択の式を少し変更するだ けでできてしまうというのが楽だなと体感すること ができた。

•Rangeは実際に利用してみてとても便利だと感じたので、1つひとつのデータを手入力するような 場面があったら、プログラムを作成し一括すること に挑戦してみたいと思った。

否定的な意見として、

•Excelのプログラムについて学習したが、自分 が今まで見たことない数式が出てきてよく理解でき ない部分があった。もう少しゆっくり説明してほし い。

などがあった。また、教材についての感想もあり、 その中の肯定的な意見として、

・授業資料として配付された一連の解説付きのマ ニュアルが手元にあることで、いつでも内容を見返 すことができるのでとても助かるなと思った。

・授業中わからない点があったが、PDF資料の おかげで理解することができた。

教材についての否定的な意見として、

・はじめにExcelのプログラムを表示する部分で 手間取ってしまったので、NDBデータの授業資料 のように、写真などわかりやすい形でプログラムを 表示するところまで説明して欲しい。

などがあった。今後の改善点として、取り入れて いきたい。 NDBオープンデータを利用するための教材作成の試み

4 まとめ

本稿では、NDBオープンデータを効率的に処理 するためにVBAを利用する方法について学習する 教材作成の試みについて報告した。教材を用いて授 業を行った結果、短時間でVBAの基本的事項を説 明することは一定程度可能であったが、1コマの授 業ですべてを説明することの困難さも確認された。 事前、事後学習などと組み合わせて、学習プランを 設計する必要性があることが示唆された。

参考文献

- [1] 厚生労働省 NDBオープンデータ, https:// www.mhlw.go.jp/stf/seisakunitsuite/bunya/ 0000177182.html (最終閲覧日 2022年1月8日)
- [2] 加藤潔,「Excel環境におけるVisual Basicプログ ラミング」, 共立出版, 1999年.
- [3] 縄田和満,「Excel VBAによる統計データ解析入 門」, 朝倉書店, 2000年.
- [4] 末永瑶葉,周田紗里奈,照屋裕菜,中島海桜,増成 直美,「NDBオープンデータを活用した平均寿命 と健康寿命に関連する要因の解析」,山口県立大 学看護栄養学部紀要14号, pp.9-23, 2021年.
- [5] 兼重美沙季, 畔津忠博, 水津久美子, 寺田亜希, 増成直美, 「死亡率に関する要因についての検討 一NDBオープンデータを用いた解析―」, 山口県立大学看護栄養学部紀要15号, 2022年.
- [6] 濱口裕太,畔津忠博,寺田亜希,水津久美子,増成 直美,「リアルワールドデータを活用した健康寿 命に関連する要因の解析」,山口県立大学看護栄 養学部紀要15号,2022年.
- [7] LibreOffice The Document Foundation, https://ja.libreoffice.org/(最終閲覧日 2022年1月8日)
- [8] 畔津忠博, 吉永敦征, 永崎研宣, 「LibreOfficeで学 ぶ情報リテラシー」, 東京電機大学出版局, 2016 年.