円筒型サイクロンの分離性能に関する実験

水 英 男*・大 原 武* 湷

Experiments on the Performance of Very Small Cyclon as a Separation

(Influence of Inlet Velocity and Dimention)

Hideo SHIMIZU and Takeshi OHARA

Abstract

This paper gives the experimental results on the infuluence of inlet velocity and dimention. Some esults oftained in such experiments are summarized as follows;

- (1) The drop of collecting efficiency is apt to be occured in inlet velocity Ui, i. e. $10 \sim 20$ m/s, inorder to make locally very thin water film on the cyclon wall.
- (2) The auther is maximum in dimension $h_1 \times b_1$, i, e, $D/2 \times D/4$ (D is cyclon diameter.), In inlet velocity U; i. e. <20m/s, the collecting efficiency is affected by height of cyclon h₁ than inlet width b₁.

1. 緒 言

近年大気汚染が社会的問題として重視されるようにな り、集塵装置に多大の関心が寄せられるようになった。 集塵装置の1つであるサイクロン関係の研究報告は数多

くあるが,現在までになされたものは,一般に図2に示 す標準型サイクロンと呼ばれる円錐部をもつものが大部 分をしてめている. この型式のサイクロンについては, 大型の場合はもとより、小型のものに対しても、圧力損

失,捕集効率など,あらゆる面において,理論的にも実-験的にもかなり研究されている.しかしサイクロン内の 流動状態は複雑でその理論も完全ではなく,さらに分散 凝集,あるいは壁面との反発等のため,捕集機構も完全 とは言えない,さて円筒型サイクロンは標準型サイクロ ンと同様に遠心力を利用することによりダストを捕集す るものである.すなわち粉体と水をサイクロン接線入口 から流入させ,水はサイクロン内壁面に水膜を作り,こ れに粉体が当って捕集される訳である.サイクロン捕集 効率に影響を及ぼす因子としては,サイクロン長さ,入 口,出口形状,入口風速,サイクロン径,温度,粘性係 数等が考えられるが,本報は,円筒型サイクロンの,入 口形状,入口風速が捕集効率に及ぼす影響について調べ た実験結果を報告する.

2. 実験装置および実験方法

図1に示すように円筒型サイクロンは、透明なアクリ ル樹脂で製作されており、サイクロン内部の流動状態が 観察できるようになっている.またサイクロン形状は、 サイクロン長さ l=115mm、サイクロン径 $D=29\phi$ mm 出口形状 $h_2 \times b_2 = 20.7 \times 7 \text{ mm}^2$ とし、入口形状のみ $h_1 \times b_1 = 8.7 \times 7 \text{ mm}^2$ 11.7×7 mm², 14.6×7 mm² 18.5×7 mm², 11.7×8.8mm², 11.7×5.4mm² の6 通りに変化させて実験した.

図3に示すごとく全体の装置は、ダスト吹込み装置 部、水量調節部、空気調節配管部より成っている。ダス ト 吹込み装置は、径40mmø, 高さ70mm の円筒容器の 上蓋に内径 0.8mmø のノズルが取り付け てあり、容器 内に入れたダストに、ノズルから出る噴洗をあて、ダス トを噴霧状態にしてサイクロンに送り込む、ダスト吹込 み量の調節はコンプレッサーの減圧弁によりノズルから 出る噴流の空気流量を変えることにより調節した.また ダストの吹込量は吹込み前後の円筒容器を直示天秤で計 り、その差により吹込量を求めた.

水量の調節は,水量を一定に保つためオーバーフロー タンクを使用し,水量はフローメーターで読みとり二方 コックにより調節した.

空気調節部は、入口風速を読みとるフロメーターと風 速を調節するバルブ、ダストを捕集するフイルターから 成っている。サイクロンの空気洗入方式としては、ブロ ワーなどによる、圧送方式と真空ポンプなどによる吸込 方式があり、捕集効率において両者の相違は、吸込方式 の方がわずか良く、傾向は同じになると言う報告はみら れるが¹⁾、本報は、真空ポンプによる吸込方式により実 験を行なった。

上記方法により調節された、ダスト、空気、水は、サ イクロン接線入口より洗入し、水はサイクロン内面に水 腹を形成する. ダストはこの水膜に衝突して付着し捕集 される. 捕集されたダストと水は、サイクロン出口管に 取り付けられたタンクに入る. 捕集されないダストは、 空気と共にサイクロン出口管より出てフイルターにて捕 集される. フイルターとして NO 5 A-12 ¹/₂ CM の

タルフ吸込装置
供試サイクロン
オーバーフロータンク
圧力計
減圧弁
コンプレッサー
12 バルブ
11 フローター
タンク
10. フイルター
13. 真空ポンプ

Fig.3 全体装置 図

Res. Rep. of Ube Tech. Coll., No.14. December, 1971

円筒型サイクロンの分離性態に関する実験

Fig. 4 タルク粒度分布

ロ紙を用いた。ダストの付着したロ紙を900°Cにて電気 **炉内で焼却し定量分折した。ダストとしてはタルクを使** 用し図4にその粒度分布が示してある.

3. 実験結果および考察

混合比と捕集効率の関係を図5に示してある. 混合比 の小さい領域に、わずか効率の低下がみられる.多くの 粒子が流体中を運動する場合、粒子同志が、凝集、分 散,崩解,凝集と云ったサイクリックな過程をくり返し ながら運動していると考えられる. 凝集によりみかけの 粒子径が大きくなり、混合比が増加すると捕集効率が大 きくなると考えられるが、はっきりした理由は分らない のが現状である.以下の実験は、捕集効率が大体一定に

Fig. 5 混合比の影響

なると考えられる. 混合比が 100g/m³ 以上について検 討する.

1)入口風速が捕集効率に及ぼす影響

サイクロン入口では, 空気, 水, ダストが同時に流れ ており, 空気の通過する有効断面積が不明であるため, 入口風量 Q_2 , サイクロン 入口面 積を $h_1 imes b_1$ とする と、入口風速 $Ui=Q/h_1 \times b_1$ で定義し、みかけの流速 をサイクロン入口風速とする.図6,7に示すものは, 入口風速を変化させ、入口形状をパラメーターにした実 験である. 水量 $Q_1 = 655 \text{cc/min}$ の場合, $U_i = 10 \sim$ 20m/sで効率の低下した部分がみられる, この理由とし て考えられることは、サイクロン内壁に形状される水膜

Fig. 6 入口風速のと捕集効率の関係(パラメータ 入口高さ)

19

Fig. 7 入口速度と捕集効率の関係(パラメーター入口巾)

が捕集効率に悪影響を及ぼしていると考えられる、以後 この水膜の 悪影響を,水膜の不安定 さと呼ぶこと にす る. 安定さとしては,水膜が厚く,水膜の水流速が速い ことが一因子と考えられ、混合比の大小も間接的に関係 するように思われる、水量を増加すると水膜が厚くなる ことは、筆者らが実験より確かめている2). 図6,7の 実線は水量 Q=800cc/min に増加させたときの実験値 で、この場合水量の少ない場合に起る Ui=10~20m/s での効率の低下の現像はなくなっており、これ以上水量 を変化させても効率はほとんど変化しなかった。また水 膜厚さの分布状況が図8に示してあるが、局部的にうす い部分が存在し、この部分の厚さは、大体 0.2mm 程度で ある. 第8図のサイクロン内面へのタルクの付着状況と 比較してみると、水膜のうすい部分をタルクが通過し付 着している状態が分り, ダストコーテイングもこのうす い水膜附近に起り易く発達していく状態も観察できる.

入口風速 Ui の変化による水膜の状態の変化が肉眼でも 観察できる.以上のことから,入口風速Ui=10~20m/s での捕集効率低下を起す原因としては,水膜の不安定さ によるもので,それも局部的にうすい水膜によるもので はないかと考えられる.この部分についての研究は今後 の問題である.

Ui>20m/s では水膜は安定していると考えられ,水 量の極端に少ない場合は別として,水量の大小には関係 なく捕集効率は大体一定値を示す.

Ui < 10m/s では水膜が形成されにくく,強制的に水 腹を作る方法を取った場合は別として、サイクロン径 $D=30mm\phi$ に対しては、Ui > 10m/sがサイクロンの使

Fig. 8 サイクロン内壁のタルク付着,水膜厚さの 分布

用範囲と考えられる.

ここで入口風速 Ui<20m/s に対して簡単な解折を行 なってみる.サイクロン内で粒子の受ける力は,遠心力 がその主をなし重力の数千から数万倍におよぶものがあ り,本実験においても,10⁴m/s²前後の遠心力を受けて いると考えられる.本実験で用いたタルクの粒度分布よ り考えて,ストークスの領域か,またはストークスの領 域からアレン領域のせん移域を運動するものとしてさし つかえないと思われる.円管内の粒子の分布は,粒子の 比重,風速,混合比により,管断面で一様に分布しない と言う報告はあるが,本実験では,サイクロン入口にお いて一様に分散された分散吹込みと仮定した.ストーク スの式より

$$V_r = K \frac{\rho_p \, \delta^2}{18\mu} F$$
 (1)
 $V_r : 粒子の半径方向速度 \qquad \delta: 粒子径$

粒子に働く力を遠心力とし他の力を無視して,粒子の 接線速度を V_{θ} とすると

$$F = V_{\theta}^2 / r \tag{2}$$

気流の接線速度 $U_{\theta} \Rightarrow V_{\theta}$ とおき(1)に(2)式を代入する.

Res. Rep. of Ube Tech. Coll., No.14 December, 1971

20

$$V_r = K \frac{\rho_p \ \delta^2 \ U_{\theta}^2}{18 \mu r}$$

上式を.δ² について整理すると

$$\delta^2 = \frac{18\mu r V_r}{K\rho_p U_{\theta^2}} \tag{3}$$

(1)

気洗の内向き速度 U_r と粒子の外向き速度 V_r とが等 しいとき粒子は移動しないことになり、そのときの粒径 を δ_c とし、これを限界粒子径と言うことにすれば

$$\delta_c^2 = \frac{18\mu r \ U_r}{K\rho_p \ U_{\theta}^2} \tag{3}$$

 U_{θ} , U_{r_1} , U_i の間には標準型 サイクロンと 同様に次の関係があることを 実験により筆者らは, 確かめている.

$$U_{\theta} = K_1 U i \tag{4}$$
$$U_r = K_2 U i \tag{5}$$

自由うず範囲内では, 0.5<K1<0.8, 0.3<K2<0.5 であるが, サイクロン中心より,入口断面中心までの距 離 r=1cm で K1=0.7, K2=0.4を得た. (5), (4)式を (3)'式に代入

$$\delta_c^2 = \frac{18\mu K_2 r}{KK_1 \rho_p U i}$$

$$\therefore \quad \delta_c = \sqrt{\frac{18\mu K_2 r}{KK_1 \rho_r U i}} \tag{6}$$

限界粒子径が小さくなると、捕集効率の増加は当然で あり、入口風速 Uiが大きくなれば、 δ_c は小となるし、 比重が大きくなれば δ_c は小となるこの両者の傾向は、 図6に示すように実験的にも確かめられる。

(6)式に対して数値計算した結果を図9に示す.実験値 と,数値計算結果の相違は,理論値の方が傾斜が急であ り,入口風速 Ui の影響が大である.これは実験値の方 に,サイクロン出口管路での捕集を考慮せず,出口管路

とサイクロン本体を合せた捕集効率を取っておるためで あると考えられる. 管路で捕集効率は,サイクロン入口 風速が小さいほど,大きくなることは,固気二相流など の文献³⁾ などにみられる.また筆者らもタルクNo.1を 使用して実験した結果,同じ傾向を得ている.ゆえに管 路に対しての捕集を補正してやれば全体的にわずか実験 値は小さくなると考えられが,グラフの傾斜はもっと急 になるものと考えられる. 今後の問題としてはもっと捕 集機構を明確にし,理論的に解折していきたいと考えて いる.

2)入口形状の捕集効率に及ぼす影響

サイクロン入口形状は、サイクロン内の流動状態を左 右する、一つの因子であり、処理風量に対しても大切な 役割をするため、捕集効率との関係を調べる大きな要素 である.

図10は安定した水膜に対して実験したもので、入口形 状の代表として入口面積を満軸にとってある.

Fig.10 入口面積と捕集効率の関係

この図より,入口面積が大なるにつれて,捕集効率は 速度の影響を受け易く,また捕集効率も低下する傾向に ある.これは接線速度の増加割合より,軸方向速度の増 加割合の方が,大きくなるためと考えられる.

実線で示される入口高さの変化については,

 $h_1 \times b_1 = 14.6 \times 7 \Rightarrow 100 \text{mm}^2$ で最高効 率を示し、 点線 で示す入口巾変化 については $h_1 \times b_1 = 11.7 \times$ $7 = 80 \text{mm}^2$ で最高効率を示すことから入口の最適形状 は $h_1 \times b_1 = 14.6 \times 7$ 附近にあると思われる. これは標 準型サイクロンに対して従来より使用されている寸法割

合
$$h_1 \times b_1 = \frac{b}{2} \times \frac{b}{4}$$
と比較し て大体良い一致を している.

宇部工業高等専門学校研究報告 第14号 昭和46年12月

1 1 1

22

教授のご冥福を祈る.

1)入口風速 Ui=10~20m/s で効率の低下を起し易 く入口形状が大きくなるにつれてその傾向は 著しくな る,これは局部的にうすい水膜が形成されることもその 一因と考えられる.

2)入口形状が大きくなるほど、捕集効率は速度の影響を受け易く、入口形状 $h_1 \times b_1 = 146 \times 7 \Rightarrow \frac{D}{2} \times \frac{D}{4}$ で 捕集効率は最高となるが Ui > 20m/sでは、入口巾の影響はほとんどない.

本研究にあたり御指導下さった本校川上靖助教授,な らびに故山口大学上岡豊教授に感謝すると同時に上岡豊 5. 文 献

- 1) 并伊谷:日本機械学会論文集 Vol 18, 69, P. 42 ---48
- 上岡,大原,川上,清水:日本機械学会講演会 186('67-11)

3)たとえば:日本機械学会誌Vol.72,611(69)

- 4) 上滝:日本機械学会誌論文集 Vol.23, 133 ('57)
- 5) W. Borth, Chem, Img. Techm 30-3 (1958)

6)神保,粉体工学研究会誌(S.41-2)

(昭和46年9月20日受理)