SVC を用いた電力系統の最適安定化制御

日高良和' 宮内真人''

Optimal Stabilization of Electric Power Systems Using A Static Var Compensator

Yoshikazu HITAKA* Makoto MIYAUCHI**

Abstract :

Static reactive-power (Var) compensators (SVCs) are finding wider use in both industrial and transmission system applications. In higher power industrial applications, static reactive-power compensators are a well established means of reactive-power control, especially for the reduction of voltage fluctuations caused by arc furnace loads. These systems are being applied to transmission systems to provide voltage regulation, reactive-power support, improved damping and an increase in system stability. This paper presents simulation results of a typical power system with a static reactive-power compensator of the thyristor-controlled reactor type. This static reactive-power compensator has linear optimal controller for the system stability. When the principle of linear optimal control is first applied to a power system, the main difficulty in design is the selection of the weighting matrices. This paper, therefore, presents the weighting matrices are decided automatically by an eigenvalue sensitivity.

Keywords: static var compensator, power system, linear optimal control

1. まえがき

わが国では、最近の電力需要増加や、社会の高度情報化 にともない電力の安定供給に対する要望がますます増大 してきた。電力の安定供給には、電力需要に見合った容量 の発電設備の所有がもっと有効であるが発電設備立地の 困難な情勢から、その実現化は難しい。そこで、現有の電 力設備にうまく付加して電力の安定供給を行うための補 助設備が必要となってきた。今回は、この補助設備として 電力系統の動揺抑制や系統電圧安定維持などに効果があ る静止形無効電力補償装置(SVC:Static Var Compensator)を考える¹⁾。SVCは、逆並列接続され たサイリスタ回路を有したリアクトルと固定または、スイ ッチを有したコンデンサにより構成されており、その無効 電力容量をサイリスタの点弧角制御により進相から遅相 まで高速かつ連続的に制御する装置である。

本研究では、発電機に自動電圧調整器(AVR: Automatic Voltage Regulator)を備えた一機無限大母線 系統²⁾にSVCを設置した系統を考え、この系統の所望 の安定度を得るために、この系の不安定領域または、その

(2000年12月22日受理)

- * 宇部工業高等専門学校電気工学科
- ** 北九州工業高等専門学校

近傍に存在する固有値を安定領域に移動させるような制 御を線形最適制御³⁾を用いて行う。この線形最適制御と従 来の PI (比例+積分)制御との比較により電力系統の安 定度向上効果についてシミュレーションを行い検討する。 また、線形最適制御において評価関数にあらわれる重み関 数行列は、試行錯誤して制御対象の要求を満たす値を求め るのであるが、ここでは固有値を移動させる際に固有値感 度行列を求めて重み関数行列を決定する方法を用いる。

2. 対象モデル

本研究では、図1に示すような一機無限大母線系統で、 発電機の励磁電圧調整にAVRを、そして系統のほぼ中間 にSVCを設置した系を考える。

2.1 発電機モデル

発電機の微分方程式は、次のような仮定の下で Park の 方程式から3次元の発電機モデルが得られる。

- 仮定1:電機子側の変圧器起電力を無視する。 仮定2:回転子速度変化に伴う電圧変化を無視する。 仮定3:制動巻線効果を無視する。
- 仮定4:電機子巻線の抵抗を無視する。

$$\frac{d\omega}{dt} = \frac{\omega_0}{M} \left\{ Tm - \frac{eq' \cdot \sin \delta}{X_1 + X_2 + X_d' - (X_1 + X_d') \cdot X_2 \cdot B_s} - \frac{(X_q - X_d') \sin \delta \cdot \cos \delta}{X_1 + X_2 + X_d' - (X_1 + X_d') \cdot X_2 \cdot B_s} - \frac{1}{X_1 + X_2 + X_q' - (X_1 + X_q') \cdot X_2 \cdot B_s} \right\}$$
(1)

$$\frac{d\delta}{dt} = \omega - \omega_0$$

$$\frac{deq'}{dt} = \frac{1}{\sqrt{E}} \frac{X_1 + X_2 + X_d - (X_1 + X_d) \cdot X_2 \cdot B_s}{\sqrt{E}} \frac{deq'}{dt}$$
(2)

dt
$$T_{do'}$$
 $X_1 + X_2 + X_d' - (X_1 + X_d') \cdot X_2 \cdot B_s$
 $-\frac{(X_1 - X_d') \cdot \cos \delta}{X_1 + X_2 + X_d' - (X_1 + X_d') \cdot X_2 \cdot B_s}$
(3)

2.2 AVRモデル

AVRは、図2のような補助信号U_{AVR}を持った1次遅れのものを考えると微分方程式は次のようになる。

$$\frac{dE_{fd}}{dt} = -\frac{1}{T_a} \cdot \left\{ E_{fd} - E_{fdo} + K_a \cdot (V_t - V_{to}) \right\} + \frac{K_a}{T_a} U_{AVR}$$
(4)

2.3 SVCモデル

SVCは、サイリスタ制御リアクトル型を考え、補助信号U_{svc}を考慮するとブロック図は、図3のようになり微分方程式は次のようになる。

図2 AVRモデル

ここで、各記号の意味は次の通りである。

ω:角透	を度 δ:位相角	M:慣性定数	Tm:機械的入力
T _{do} '	:直軸開路時定数	ά Ε _{fd}	: 界磁電圧
eq'	:過渡りアクタンス背後	後電圧 X _q	:横軸リアクタンス
X_d	:直軸リアクタンス	X _d '	: 直軸過渡りアクタンス
X ₁ , X	2:送電線りアクタンス	B _s	:SVC容量
V _{ref}	: 設定電圧	V _t	:発電機端子電 圧
T _a	:AVR時定数	K _a	:AVRゲイン
V _{svc}	:SVC端子電日	E T _f	:SVC時定数
K _f	:SVCゲイン		

.

)

3.1 線形最適制御則

前項で示した電力系統のモデル式は、

$$\mathbf{x} = \mathbf{f} \left(\mathbf{x} \,, \mathbf{u} \,, \mathbf{t} \,\right) \tag{6}$$

と表され、このモデル式に対しある運転状態において線形 化すると、次の系統状態方程式が得られる。

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{u} \tag{7}$$

但し、X= [$\Delta \delta$, $\Delta \omega$, $\Delta eq'$, ΔE_{fd} , ΔBs]^T u = [ΔU_{AVR} , ΔU_{SVC}]^T

$$\mathbf{J} = \int_{0}^{\infty} \frac{1}{2} \left(\mathbf{x}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \mathbf{x} + \mathbf{u}^{\mathrm{T}} \cdot \mathbf{R} \cdot \mathbf{u} \right) dt$$
(8)

であり、この評価関数Jを最小にするuが最適制御入力として得られる。ここで随伴変数ベクトルpを導入すると、 ハミルトニアンHは、

$$\mathbf{H} = \frac{1}{2} \left(\mathbf{x}^{\mathrm{T}} \cdot \mathbf{Q} \cdot \mathbf{x} + \mathbf{u}^{\mathrm{T}} \cdot \mathbf{R} \cdot \mathbf{u} \right) + \mathbf{p}^{\mathrm{T}} \cdot \left(\mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{u} \right)$$
(9)

となり、(7)式は次のように書き換えできる。

図3 SVCモデル

(10)

$$x = M \cdot X$$

但し、M=
$$\begin{pmatrix} A & -B \cdot R^{-1} \cdot B^{T} \\ & & \\ -Q & -A^{T} \end{pmatrix}$$
 X= $\begin{pmatrix} x \\ p \end{pmatrix}$

線形最適制御則uを求めるためには、随伴変数ベクトルp の解を求める必要がある。この随伴変数ベクトルは、状態 変数ベクトルxと線形関係にあるので、

$$p = K \cdot x \tag{11}$$

と表される。ここで、Kはリカッチ行列方程式から得られ るリカッチ行列である。

 $K \cdot A + A^{T} \cdot K - K \cdot B \cdot R^{-1} \cdot B^{T} \cdot K + Q = 0$ (12) 以上のことから、線形最適制御則uは次式のようになる。 $u = -R^{-1} \cdot B^{T} \cdot K \cdot x$ (13)

3.2 重み関数行列の決定法

線形最適制御則を決定するためには、リカッチ行列と重 み関数行列を求めなければならない。リカッチ行列は (10)式の状態・共状態システム行列Mの固有ベクトルκ から計算できるので、重み関数行列の決定について述べる。 またここでは、系統の安定性を問題としているので評価関 数(8)式の過渡特性を表す第1項に含まれる重み行列Q に注目してこの重み関数行列を決定する方法を述べる。

(10)式の状態・共状態システム行列Mの固有値行列Λ の中で複素平面の左半平面上の任意の位置へΔλ移動さ せたい固有値λに注目する。

 $\lambda = \lambda + \Delta \lambda$ $\Delta \lambda < 0$ (14) 固有値 λ の移動量 $\Delta \lambda \geq \lambda$ この移動による重み関数行列Q の変動量 $\Delta Q \geq 0$ 関係は、固有値に関係する重み関数 q の

固有値感度
$$\frac{\partial \lambda}{\partial q}$$
 を用いて次のように表せる。
 $\Delta Q = \alpha^{-1} \cdot \Delta \lambda$ (15)

$$\hbar \tilde{\kappa} = \frac{\partial \lambda}{\partial q}$$

また、固有値感度は、システム行列MとM⁻¹のそれぞれ の固有ベクトル κ , μ を用いて次のように求められる。

$$\frac{\partial \lambda}{\partial q} = \frac{\mu^{\mathrm{T}} \cdot \frac{\partial M}{\partial q} \cdot \kappa}{\mu^{\mathrm{T}} \cdot \kappa}$$
(16)

以上のことから、所望の安定性を得るための重み関数行 列Qが求められる。 このアルゴリズムを図4に示す。

図4 固有値移動のアルゴリズム

4. シミュレーション結果

機械的入力Tm のステップ変化に対する応答と3相短 絡事故を想定したシミュレーションを行った。発電機出力 P₁は、0.6 [p.u.] と 0.9 [p.u.] とし、系統定数は表1 に示す値を用いた。

表1 各定数值

発電機定数	AVR定数	SVC定数
Xd = 1.14 [p.u.]	Ka = 10.0 [p.u.]	Kf = 50.0 [p.u.]
Xď = 0.24 [p.u.]	Ta = 0.50 [p.u.]	Tf = 0.01 [sec]
Xq = 0.66 [p.u.]		Vref = 1.00[p.u.]
Tdo'=12.0 [sec]		
M = 10.0 [sec]		

4.1 固有値移動の影響

ここでは、固有値移動による系統安定度に対する効果を 検証する。外乱として機械的入力Tm を-0.02 [p.u.] だ けステップ変化させた場合を考える。

P₁=0.6 [p.u.] の場合 1) P I 制御方式での固有値は次のようになる。 - 1160.1540 + j (0.000) -1.0780 ± j (0.4306) $-0.0152 \pm j (5.6770)$ る。 いま、この固有値の中で最も不安定領域に近い -0.0152 ± j (5.6770)に注目し、この固有値を複素平面 左半平面上の安定領域へ移動させる。今回のシミュレーシ ョンでは固有値の実部を - 0.5、 - 1.5、 - 3.0 へ移動した。 そのときの各固有値と重み関数行列を以下に示す。 但し、評価関数の制御エネルギーの項に含まれる重み関 数行列Rは、R=DIAG [1, 1] とした。 ○固有値実部 - 0.5 へ移動 2.89×10^{-3} 7.22×10^{-2} Q = 5.10×10^{-4} 1.30×10^{-5} 2.17×10^{-1} 固有值 -1160.1540 + j (0.000) $-1.0881 \pm j (0.4381)$ $-0.5077 \pm j (5.6771)$ ○固有値実部 - 1.5 へ移動 2.51×10^{-2} 6.87×10^{-1} Q =1.19 4.40×10^{-3} 1.99×10^{-7} 固有值 - 1160.1540 + j (0.000) $-1.5049 \pm j (0.4263)$ -1.5020 ± j (5.6770) ○固有値実部 - 3.0 へ移動 9.68×10⁻² 3.51Q = 2.68×10^{1} 3.41×10^{-2} 8.11×10⁻⁷/ 固有值 - 1160.1540 + j (0.000) $-3.0082 \pm j (0.4104)$ - 3.0076 ± j (5.6767)

2) P₁=0.9 [p.u.] の場合 前項と同様に最も不安定領域に近い固有値に注目して、 その固有値の実部を - 0.5, - 1.5, - 3.0 へ移動し安定度 への効果をみる。PI制御方式での固有値は次のようにな - 1242.5680 + j (0.000) $-1.0623 \pm j (0.4114)$ $-0.0256 \pm j (5.7372)$ ○固有値実部 - 0.5 へ移動 9.66×10⁻⁴ 2.58×10^{-2} Q =4.90×10⁻⁴ 3.90×10⁻⁶ 2.08×10^{-8} 固有值 - 1242.5680 + j (0.000) $-1.0692 \pm j (0.4137)$ $-0.5007 \pm j (5.7372)$ ○固有値実部 - 1.5 へ移動 8.75×10⁻³ 2.51×10^{-1} Q =1.30 4.56×10⁻³ 2.01×10^{-7} 固有值 -1242.5680 + j(0.000) $-1.5089 \pm j (0.4066)$ $-1.5063 \pm j (5.7372)$ ○固有値実部 - 3.0 へ移動 ′3.38×10⁻² 1.25 Q = 2.64×10^{1} 3.35×10⁻² 8.18×10⁻⁷ 固有值 - 1242.5680 + j (0.000) $-3.0023 \pm j (0.3900)$ $-3.0019 \pm j (5.7368)$

以上のステップ変化に対する位相角の応答を図5に示 す。図からわかるように当然のことながら固有値実部を複 素平面左半平面上の安定領域へ大きく移動させるほど、外 乱に対する応答はすばやく定常状態に落ちついており安 定性と応答性は良くなっている。

4.2 制御方式の比較

次に、①PI制御(PIと呼ぶ)、②固有値固定(重み 関数行列固定)の線形最適制御(Q_{SET}と呼ぶ)、③固有 値移動の線形最適制御(λ_{SET}と呼ぶ)の3方式の比較を 行う。外乱として機械的入力Tmを-0.02 [p.u.] だけス テップ変化させた場合と3相短絡事故(0.1秒間)を想定 した。制御条件としては、次のように設定した。 ・Q_{SET}の場合

Q=DIAG[1,1,1,1,1], R=DIAG[1,1] ・λ_{SET}の場合

初期状態での固有値の中で最も不安定領域に近い固有 値に注目して、その固有値実部を - 1.5 の安定領域へ移動 するように重み関数行列Qを決定する。

但し、R=DIAG [1,1]とする。

各制御方式による機械的入力Tm のステップ変化に対 する位相角の応答を図6に、3相短絡事故を想定した場合 の位相角の応答を図7に示す。

図5 固有値移動による安定効果(Tm ステップ変化)

図から今回の機械的入力のステップ変化のような小さ い外乱や、3 相短絡事故のような比較的大きな外乱に対し ても固有値移動の線形最適制御(λ_{SET})が最もはやく定 常状態に落ちついており固有値移動の線形最適制御の有 効性がわかる。

5. まとめ

本稿では、発電機にAVRを備えた一機無限大母線系統 の中間点付近にSVCを設置した系統を考え、制御方式に はこの系統が所望の安定度を得るために固有値実部を複 素平面左半平面上の安定領域へ移動させるように評価関 数の重み関数行列Qを決定する線形最適制御方式の有効 性について報告を行った。シミュレーションの結果からこ の制御方式により系統の安定度は従来のPI制御方式よ り効果的であることがわかった。 また、試行錯誤的に選定されていた重み関数行列Qも固有 値移動の際に固有値感度を利用して比較的容易に決定で きることが確認できた。

参考文献

- (1)望月,他:「静止形無効電力補償による電力系統の安定向上」,電気学会電力技研資料,PE 87 150, 1987
- (2) Y. N. Yu: [Electric Power System Dynamics], Academic Press, 1983
- (3) Y. N. Yu, et al. : [Application of an Optimal Control Theory to a Power System Dynamics], IEEE Trans.Power Apparatus System, PAS-89,55, 1970

