Correlation of Infinite Dilution Activity Coefficients by Group-Contribution Methods

Alkanol + Alkane Binary Systems

Kenji FUKUCHI^{*}, Katsumi MIYOSHI^{*}, Toru WATANABE^{*}, and Yasuhiko ARAI[°]

Department of Chemical and Biological Engineering, Ube National College of Technology, Tokiwadai, Ube 755, Japan
 Department of Industrial Chemistry, Ariake National College of Technology, 150 Higashihagio, Omuta 870, Japan
 Department of Chemical Engineering, Kyushu University, 6–10–1 Hakozaki, Higashi–ku, Fukuoka 812–81, Japan

Abstract

ASOG and UNIFAC which are two typical group-contribution methods were applied to calculate the infinite dilution activity coefficients of alkanol(methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, or 2-butanol) in alkane(hexadecane or tetradecane). The infinite dilution activity coefficients can be correlated by adjusting the ASOG group-interaction parameters between hydroxy(OH) and methyl(CH_2) groups.

Key Words : Phase Equilibrium. Activity Coefficient. Infinite Dilution, ASOG, UNIFAC, Alkanol, Alkane

1. Introduction

Infinite dilution activity coefficients are very important to predict the volatility of solute in a solvent and phase equilibria such as vapor-liquid and liquid-liquid equilibria. Therefore, the authors have measured the infinite dilution activity coefficients of alkanol in alkane by a gas stripping method[1].

In the present study, the experimental data reported were correlated by group-contribution methods, such as ASOG[2] and UNIFAC[3-5] which are often used in the process design. The interaction parameters between OH and CH_2 groups were reevaluated to give better correlation performance.

2. Group-Contribution Methods

2.1 ASOG

The infinite dilution activity coefficient γ_1^{∞} of a solute(alkanol) in a solvent(alkane) can be given by ASOG as follows[2].

$$\ln \gamma_{i}^{\infty} = \ln \gamma_{i}^{\text{FH}^{\infty}} + \ln \gamma_{i}^{\text{G}^{\infty}}$$
(1)
$$\ln \gamma_{i}^{\text{FH}^{\infty}} = \ln \frac{\nu_{i}^{\text{FH}}}{\sum_{j} \nu_{j}^{\text{FH}} x_{j}} + 1 - \frac{\nu_{i}^{\text{FH}}}{\sum_{j} \nu_{j}^{\text{FH}} x_{j}}$$
(2)

。有明工業高等専門学校工業化学科

^c 九州大学工学部化学機械工学科

$$\ln \gamma_{i}^{G} = \sum_{k} \nu_{ki} (\ln \Gamma_{k} - \Gamma_{k}^{(i)})$$
(3)

$$\ln \Gamma_{k} = -\ln \sum_{l} \chi_{l} a_{kl} + 1 - \sum_{l} \frac{\chi_{l} a_{lk}}{\Sigma \chi_{m} a_{lm}}$$
(4)

where the group fraction for group k, X_k , is denoted as follows.

$$X_{k} = \sum_{i} X_{i} \nu_{ki} / \sum_{i} (X_{i} \sum_{j} \nu_{ji})$$
(5)

The group Wilson parameter akt is empirically expressed as

$$\ln a_{k1} = m_{k1} + n_{k1}/T \tag{6}$$

2.2 UNIFAC

The values of γ_1^{∞} can also be derived from UNIFAC[3] as follows.

$$\ln \gamma_{i}^{\infty} = \ln \gamma_{i}^{c^{\infty}} + \ln \gamma_{i}^{R^{\infty}}$$
(7)

$$\ln r_{1}^{c\infty} = \ln \frac{r_{1}}{r_{2}} + \frac{z}{2} q_{1} \ln \left(\frac{q_{1}r_{2}}{q_{2}r_{1}} \right) + \frac{z}{2} (r_{1}-q_{1}) - (r_{1}-1) - \frac{r_{1}}{r_{2}} \left\{ \frac{z}{2} (r_{2}-q_{2}) - (r_{2}-1) \right\} (8)$$

where z is coordination number(z=10), r_1 and q_1 are volume parameter and surface parameter for component i. And they are given as follows.

$$r_{i} = \sum_{k} \nu_{k}^{(i)} R_{k}$$
(9)

$$q_{i} = \sum_{k} \nu_{k}^{(i)} Q_{k}$$
(10)

The residual part R of Eq. (7), due to energetic, is expressed as follows.

$$\ln \gamma_{1}^{R^{00}} = \sum_{k} \nu_{k}^{(1)} (\ln \Gamma_{k}^{(2)} - \ln \Gamma_{k}^{(1)})$$
(11)

where

$$\ln \Gamma_{k} = Q_{k} [1 - \ln(\sum_{m} \Theta_{m} \Psi_{mk}) - \sum_{m} (\frac{\Theta_{m} \Psi_{km}}{\sum \Theta_{n} \Psi_{nm}})]$$
(12)

and the area fraction for group m, Θ_m , and the group-interaction parameter Ψ_{km} are given as

$$\Theta_{m} = \frac{Q_{m} \chi_{m}}{\sum_{n} Q_{n} \chi_{n}}$$
(13)

$$\Psi_{mn} = \exp(-\frac{a_{mn}}{T})$$
 (Original and Bastos) or $\Psi_{mn} = \exp\{-\frac{(a_{mn}+b_{mn}T+c_{mn}T^2)}{T}\}$ (Weidlich)(14)

where X_m is the group fraction for group m in mixture and it is calculated in a similar manner to Eq. (5)(ASOG).

To calculate activity coefficients of i-th component from UNIFAC, group volume parameters R_k , group surface area parameters Q_k , group-interaction parameters a_{mn} , b_{mn} , and c_{mn} contained in Ψ_{mn} are needed. In the present study, three types of UNIFAC model were applied for infinite dilution activity coefficient. Their parameters are presented in Tables 1 - 4.

49

	СНэ	CH 2	СН	СОН	МСОН	СНОН
Rĸ	0. 9011	0.6744	0. 4469	1.2044	1. 4311	0. 9769
Qĸ	0.848	0.540	0. 228	1.124	1.432	0.812

Table 1 UNIFAC group volume, surface area, and interaction parameters[3]

асн2/сон = 931.2 , асон/сн2 = 169.7

where COH:general case, MCOH:methanol, CHOH:secondary alkanol

Table	2	UNIFAC	group	volume,	surface area.	and	interaction	parameters[4]
10010	-	0011.40	Pronb	vorume,	Sullace alea,	anu	Interaction	parameters

	СНз	CH 2	СН	ОН	СН₃ОН
Rx	0. 9011	0. 6744	0. 4469	1.0000	1. 4311
Qx	0. 848	0. 540	0. 228	1.200	1. 432

асн2/он = 1024.50, аон/сн2 = 173.32 асн2/снзон = 917.16, аснзон/сн2 = -34.51

Table 3 Modified UNIFAC group volume, surface area parameters[5]

	СНз	CH2	СН	OH(1-)	OH(2-)	OH(tert-)	
Rĸ	0. 6325	0. 6325	0. 6325	1. 2302	1. 0500	1.0500	-
Qĸ	1. 0608	0. 7081	0. 3554	0. 8927	0. 8789	0.7826	

Table 4 Modified UNIFAC group interaction parameters[5]

a _{m n}	b m n	Cmn	
2777.0	-4.674	0. 001551	
1606.0	-4.746	0. 0009181	
-	атл 2777. 0 1606. 0	amn bmn 2777.0 -4.674 1606.0 -4.746	

where $\Psi_{mn} = \exp \{ - (a_{mn} + b_{mn}T + c_{mn}T^2) / T \}$

3. Prediction and Correlation

3.1 ASOG

The infinite dilution activity coefficients[1] were predicted by ASOG with the parameters reported in the literature. The interaction parameters(ASOG) between -CH₂-(alkane) and -OH (alkanol) are given as follows[2].

In асналон = -41.2503 + 7686.4 / Т		(15)
ln аон/сн2 = 4.7125 - 3060.0 / Т		(16)

The prediction performance of ASOG is presented in Table 5 and a graphical illustration is given in Fig.1 for example. As shown in Table 5 and Fig.1, ASOG gives slightly larger values of the infinite dilution activity coefficients though the temperature dependency is correct.

To improve the correlation performance, we attempted to adjust the interaction parameters of ASOG. The two parameters, which are most effective, were adjusted here as Table 5(adjusted I and II) using the Marquardt method[6]. The correlation performance with adjusted parameters is presented in Table 5 and Figs. 1-9. As shown in the table and the figures, much improved results can be obtained.

3.2 UNIFAC

The prediction performance of UNIFAC are presented in Table 6 and a graphical illustration is given in Fig.1 for example. As shown in Table 6 and Fig.1, UNIFAC give smaller values of the infinite dilution activity coefficients in the original UNIFAC[3] and Weidlich modified UNIFAC[5], and the temperature dependency is not suitable in the original UNIFAC[3] and Bastos improved UNIFAC[4].

To improve the correlation performance using the original UNIFAC, we attempted to add a coefficient b_{mn} empirically to Ψ_{mn} , as shown in Table 6, which seems to be effective. Their values, $b_{CH2/COH}$ and $b_{COH/CH2}$, were determined by using the Marquardt method[6]. The correlation performances with modified parameters are presented in Table 6. As shown in the table, however, relatively large discrepancy still remains.

4. Conclusion

ASOG and UNIFAC which are two typical group-contribution methods were applied to calculate the infinite dilution activity coefficients of alkanol(methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, or 2-butanol) in alkane(hexadecane or tetradecane). The infinite dilution activity coefficients can be correlated by adjusting the ASOG group-interaction parameters between hydroxy(OH) and methyl(CH₂) groups. An improvement of UNIFAC should be considered in the future work.

Acknowledgement

The authors would like to acknowledge the financial support provided by the Grant-in-Aid for Scientific Research(C) of the Ministry of Education, Science, Sports and Culture, Japan(C-06650868, 1994 and C-07650909, 1995-1996).

Res. Rep. of Ube National Coll. of Tech. No. 43 March 1997

50

		ASOG	ASOG**	ASOG***	
Solvent	Solute	original[2] Error[%]*	adjusted(I) Error[%]*	adjusted(II) Error[%]*	
	Methanol	14.2	37.9	27.4	
	Ethanol	16.8	16.6	4.1	
Hexadecane	1-Propanol	25.4	10.3	3.6	
	2-Propanol	47.0	4.8	11.6	
	1-Butanol	58.9	13.9	31.3	
	2-Butanol	85.4	32.6	11.9	
	Methanol	11.7	34. 7	23. 7	
	Ethanol	14.5	18.3	5.6	
Tetradecane	1-Propanol	20.3	14.1	2.9	
	2-Propanol	41.1	1.3	15.1	
	1-Butanol	40.4	5.2	16.1	
	2-Butanol	77.8	26.8	6. 9	
*Error[%]= 1	$\frac{00}{N} \Sigma r$	∞ $\gamma $	$x_{p.} / \gamma_{i, exp.}^{\infty}$, N = number of	data
** Мон∕сн2 =	4.3187,	Пон∕сн₂ = -28	22. 1		
*** 1-Alkand	1 Мон/снг	= 4.6742 , n	он∕сн2 = -2984.	2	
2-Alkano	l Мон/сн2	= 4.0319 , n	он∕сн2 = -2672.	8	

Table 5 Prediction and correlation performance of infinite dilution activity coefficients of alkanol in hexadecane or tetradecane by ASOG

Table 6 Prediction and correlation performance of infinite dilution activity coefficients of alkanol in hexadecane or tetradecane by UNIFAC

		UNIFAC	UNIFAC	UNIFAC	UNIFAC**	UNIFAC**
Solvent	Solute	original[3]	Bastos[4]	Weidlich[5]	adjusted(I)	adjusted(II)
		Error[%]	Error[%]	Error[%]		Error[%]
	Methanol	31.8	41.6	51.6	11.6	12.9
	Ethanol	50.4	27.4	27.8	27.5	32.4
Hexadecane	1-Propanol	47.2	27.2	18.8	26.0	27.0
	2-Propanol	78.2	23.6	24.2	60.0	31.3
	1-Butanol	34.7	28.3	6.8	43.4	29.8
	2-Butanol	70.2	31.2	3.8	41.3	26.6
	Methanol	37.1	39.2	.49. 0	10.9	12.7
	Ethanol	51.8	27.8	28.9	29.7	34.4
Tetradecane	1-Propanol	49.6	28.6	21.9	26.9	29.0
	2-Propanol	78.8	28.1	27.1	61.2	33.6
	1-Butanol	41.1	31.9	10.1	38. 2	33.0
	2-Butanol	71.8	27.6	3. 9	44.4	25.5
*E	$[rror[\%] = \frac{10}{N}$	$\frac{0}{\Sigma} \sum \gamma_{i,cal}^{\infty}$	$c_{1} = \gamma_{1, exp.}^{\infty}$	$\gamma_{1, exp.}^{\infty}$, N	l = number of d	ata
**	вснг∕сон =	-1.580 , bcom	и∕сн2 = 1.398 ,	where Ψ_{mn} =	exp(bmn - amn/	T)
**	* 1-Alkanol	вснг∕сон =	-1.147 , bco	н∕сн₂ = 1.192		
	2-Alkanol	bсн₂∕сон =	-3.339 , bcou	н∕сн2 = 1.946		

宇部工業高等専門学校研究報告 第43号 平成9年3月

Fig.1 Prediction and Correlation performance of infinite dilution activity coefficients of ethanol in hexadecane by ASOG and UNIFAC

Fig.2 Correlation performance of infinite dilution activity coefficients of 1-alkanol in hexadecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

Fig.3 Correlation performance of infinite dilution activity coefficients of 1-alkanol in tetradecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

Fig.4 Correlation performance of infinite dilution activity coefficients of 1-propanol or 2-propanol in hexadecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

Fig.5 Correlation performance of infinite dilution activity coefficients of 1-propanol or 2-propanol in tetradecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

Fig.6 Correlation performance of infinite dilution activity coefficients of 1-butanol or 2-butanol in hexadecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

宇部工業高等専門学校研究報告 第43号 平成9年3月

Fig.7 Correlation performance of infinite dilution activity coefficients of 1-butanol or 2-butanol in tetradecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

Fig.9 Correlation performance of infinite dilution activity coefficients of 1-alkanol in hexadecane or tetradecane by ASOG with adjusted parameters(adjusted (II) in Table 5)

Nomenclatures

акі	ASOG group Wilson parameter
amn	UNIFAC group interaction parameter
b _{m n}	UNIFAC group interaction parameter
Cmn	UNIFAC group interaction parameter
Mki	ASOG group interaction parameters
Пк i	ASOG group interaction parameters
Qĸ	surface parameter for group k
Q i State	surface parameter for component i
Rĸ	volume parameter for group k
Γi	volume parameter for component i
Т	temperature, K
t	temperature, °C
Xĸ	group fraction for group k
Хі	mole fraction for component i
Z	coordination number(z=10)
<greek letter<="" td=""><td>s></td></greek>	s>
$\Gamma_{\mathbf{k}}$	activity coefficient for group k
Γ_{k}	activity coefficient for group k in pure component i
r	activity coefficient
Θm	area fraction for group m
ンi RH	number of groups in molecule i
ν_i	number of atoms(other than H) in molecule i
\mathcal{V}_{ki}	total number of atoms(other than H) in group k of molecule i
$\mathcal{V}_{\mathbf{k}}$	number of groups for group k in pure component i
Ψnm	group interaction parameter for UNIFAC
<subscripts></subscripts>	
i, j	components i and j
k, l, m, n	groups k, l,m, and n
ki	group k in molecule i
1	solute(alkanol)
2	solvent(alkane)
<i>(</i> 0 <i>))))</i>	
<superscripts< td=""><td></td></superscripts<>	
C EU	combinatorial term
гп	Size contribution(Flory-Huggins eqn.)
u (1)	group contribution
	standard state(pure component i)
π ∽	residual term
ω.	

References

- [1] K. Fukuchi, K. Miyoshi, and Y. Arai, Kagaku Kogaku Ronbunshu, 22(1996)372-377.
- [2] K. Tochigi, D. Tiegs, J. Gmehling, and K. Kojima, J. Chem. Eng. Japan, 23(1990)453-463.
- [3] A. Fredenslund, , R. L. Jones, J. M. Prausnitz, AIChE J., 21(1975)1086-1099.
- [4] J. C. Bastos, M. E. Soares, and A. G. Medina, Ind. Eng. Chem. Res., 27(1988)1269-1277.
- [5] U. Weidlich and J. Gmehling, Ind. Eng. Chem. Res., 26(1987)1372-1381.
- [6] D. W. Marquardt, J. Soc. Ind. Appl. Math., 11(1963)431-441.

Appendix

The infinite dilution activity coefficients of alkanol(methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, or 2-butanol) in alkane(hexadecane or tetradecane) already published [1] are summarized as appendix(Tables A-1 and A-2).

Temp. [℃]	Methanol	Ethanol	1-Propanol	2-Propanol	1-Butanol	2-Butanol
20	58.0	45.8	34. 9	30. 2	23. 5	21. 2
30	51.2	32.4	27.0	23.1	18.5	16.1
40	38.2	24.4	20. 1	17.3	14.5	12.3
50	28.5	16.6	14.7	13.1	10.8	9.47
60	20.0	12.6	11.3	10.5	8. 52	7.47
70	18.2	10.1	8.35	8.16	6.50	6.05
80		8. 03	6.83	6.60	5.15	5.04

Table A-1 Infinite dilution activity coefficients of alkanol in hexadecane

Table A-2 Infinite dilution activity coefficients of alkanol in tetradecane

Temp. [℃]	Methanol	Ethanol	1-Propanol	2-Propanol	1-Butanol	2-Butanol
20	61.7	51.9	40. 2	36. 9	30. 7	24. 2
30	54.2	36.6				
40	40.5	26.5	23. 1	20. 0	18.9	13.6
50	31.2	19.6			•	
60	22. 0	14.7	12.9	11.6	9.71	8.45
70	18.8	11.6				
80		8.86	7.92	7.36	6. 31	6.05

(平成8年9月24日受理)