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On the consistency of the distribution function in

moment method

Yoshinobu OKAMURA＊

Abstract

  The moment method is reviewed from the point of the consistency of the distribution function and a method

to construct the irreversible thermodynamics based on the moment method is discussed .  The difficulty to construct

it is to find out the distribution function with the consistency on the entropy. 

1.  lntroduction

  The distribution function for the i-th component is

denoted by fi (r，vt，t).  The subscript i of f is neces-

sary， because it refers to the macroscopic variables

like the number density of the i-th component when we

take the functional hypothesis of the distribution

function.  Note that the distribution function can be

written as fi (｛Xi (r，t)｝， vi)，where ｛Xi (r，t)｝ repre-

sents a set of macroscopic variables.  When the

macroscopic variables are defined by using the distri-

bution function， we can write out the distribution

function in terms of the macroscopic variables and vi

with the consistency.  When a macroscopic variable is

defined by

  Xi (r，t)? 4 i (vi) fi (｛Xi (r，t)｝， vi) d3vi，

                                       (1.  1)

the equation is the identity due to the consistency .  The

distribution function is always determined through

this report such that the equation satisfies the above

identity . 

  In section 2 ， we introduce the macroscopic variables

which in general describe a system.  The idea of the

consistency is exampled in the case that the number

density， barycentric velocity and the energy density

are the macroscopic variables .  ln section 3 ， the closed
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coupled differential equations for the macroscopic

variables are derived from the kinetic equation.  The

same idea is applied to the system whose macroscopic

variables are the diffusion flux， the stress tensor and

the heat flux in addition to those used in section 3 ， and

the distribution function with the ttconsistency'' is

derived along the line of Grad's Hermite polynomial

expansioni＞ in section 4 .  The method is the generaliza-

tion for multi-component system of Grad's thirteen

moment method2) for the single-component system. 

In section 5， The method to construct the irreversible

thermodynamics and to obtain the nonlinear transport

coefficients with the consistency， is discussed. 

2 .  The macroscopic variables

  The macroscopic state of the system at time t is

assumed to be specified by the macroscopic variables

defined by the one-body distribution function fi ＝＝ fi (r，

vt ， t) ， where r and vi are the position variable and the

velocity variable， respectively.  The moments of vi，

some of which correspond to the macroscopic physical

quantities such as the average velocity， are

introduced.  lt is convinient to define the number

density and the average velocity by

  ni＝ni (r，t) :f fi d3vi， (2.  1)

  niVi＝ni (r，t) Vi (r，t)＝J vi fi d3vt， (2. 2)

  mnV＝mn(r，t) V (r，t) ＝ 2iminiVi

      ＝2i/ mivi fi d3vi， (2. 3)
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where

           n＝2tni， (2.  4)

         mn＝2imini.  (2. 5)
  We note that Vi is the average velocity of only

component i and V is the barycentric velocity. 

Another important physical quantity is the energy

density defined by

  niEt＝nt (r，t) Ei (r，t)

      ＝J(m，/2) (v，一V)2f， d3v，.  (2. 6)

The ni E i is conventionally written as (3/2)niT for

monoatomic ideal gas， where the Boltzmann's con-

stant is assumed to be unity.  '

  Also， there are a couple of important physical

quantities which are intrinsic quantities in nonequili-

brium state.  The viscous phenomena (momentum

transport) ， the diffusion of matter (mass transport)

and the heat conduction (energy transport) are typical

nonequilibriUm phenomena.  When only the number

denSity， the barycentric velocity and the energy

density are taken as the macroscopic variables， it is

hard to describe the nonequilibrium phenomena.  The

felated macroscopic physical quantities are the diffu-

sion flux， the stress tensor and the heat flux defined

by

  Ji :mini (Vi-V)

    ＝2j (dij h(mini/mn)) J m」vj fj d3vj， (2.  7)

  P'＝2ipit . 
    ＝2，/ m， (v，一V，) (v，一V，) f， d3v，， (2. s)

  q＝Σ童q量               . 

    ＝2，/ (m，/2) (v，一V，)2 (v，一V，〉 f， d3v，.  (2. 9)

  The diffusion flux disappears if the summation is

taken over all' モ盾高垂盾獅?獅狽?  Then， the diffusion flux

of a particular・ component is not independent of

others.  Addition to this， we note that the stress tensor

and the heat flux are written as the superposition of

each component .  lt is sometimes convinient to define

them in a different way， which ，specifies the property

of the system in a coordinates moving at the speed of

the barycentric velocity V.  We redefine the stress

tensor and the heat flux by

  P＝Σ，P童

    ＝2，/ m， (v，一V) (v，一V) f， d3v，， (2.  10)

  Q＝2，Q，
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        ＝ 2，f (m，/2＞ (v，一V)2 (v，一V) f， d3v，.  (2.  11)

      The relations between both definitions are as fol-

    lows;

     Pi'＝ Pi一(1/mint) JiJi， (2.  12)

     Q且＝q量＋h，・J童，                 (2. 13)

    where

     hi＝(1/mini) ［Pi一' ｛(Ji'Ji/mtni＞一nt E i｝ U］. 

                                            (2.  14)

     U is the unit second rank tensor.  Conventionally，

     Pt and qi are used as the stress tensor and the heat

    flux respectively， and hi is the enthalpy. 

     Let's split the stress tensor into three parts ， the first

    of which is the local equilibrium pressure pt.  The

    second is the nonequilibrium pressure II i.  defined by

    one third of the trace of the stress tensor less pt and

    the third is the traceless symmetric part POi. 

     P，＝ (p，十II，) U十PO，， (2.  15)

   where

     pi十II t＝ (1/3) (Pt:U)， (2.  16)

     pi＝(1/3) f mt (vt-V)2 fi(O) d3vi＝ntT， (2.  17)

      II且二(1/3)∫m茸(vl-V)2(frfi(o))d3v1，   (2. 18)

   and the local equilibrium distribution function is

   defined by

     ft(O)＝nt〈mt/2 n T)(3'2) exp ｛(一mi/2T) (vt-V)2｝. 

                                           (2.  19)

   We should pay the attention to (2.  15) which shows

   that all diagonal elements of the stress tensor are

   equal.  This holds true only when the system is

   isotropic， i. e. ， the distribution function depends on

   the absolute value of the (vt-V) .  We also note that the

   antisymmetric part of the stresS tensor doesn't exist

   due to the definition of our stress tensor.  We may have

   the antisymmetric part of the stress tensor in liquid

   phase but not in gas phase.  The substitution of 〈2. 15)

   into (2 .  14) gives the precise meaning about the tensor

   ht as follows;

     ht＝(1/mini) (pi十(3/2)niT) U

       十(1/mln呈)［｛II，一(」！・Ji/m且n！)｝U十P。且］.  (2. 20)

     The first term represents the local equilibrium

   enthalpy and the second is the nonequilibrium effects

   of the enthalpy .  When we evaluate the diffusion flux ，

   the stress tensor and the heat flux with the local

   equilibrium distribution function， we obtain

. 一
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 Jt(O)＝ S mtvi ft(O) d3vi

   一(mtni/mn) 2j J mj vj fj (O｝ d3vj ＝O， (2.  21)

 P，(O)＝ f m， (v，一V) (v，一V) f，(O) d3v，

    ＝(2/3) ni E iU＝piU， (2.  22)

 qi(o)＝∫(m且/2)(vrV)2(vrV)fi(o)d3vi＝0. 

                                      (2.  23)

  Similarly，the enthalpy is written as

 hi‘O'＝(1/mini) (pi十ni E i) U＝(5T/2mi) U. 

                                      (2.  24)

  Even if the distribution function does't include the

macroscopic variables such as the diffusion flux，the

stress tensor and the heat flux， it is possible to

evaluate the macroscopic variables in terms of the

number density， the barycentric velocity and the

energy density.  This implies that the distribution

function contains the independent macroscopic varia-

bles with the consistency. 

●

3 The distribution function with the number

density， the barycentric velocity and the

energy density as the independent macro-

scopic variables

  The distribution function which includes the number

density， the barycentric velocity，the energy density

and the mass besides the velocity variable， satisfies

the following identities (the requirement of the consis-

tency) ;

  ni＝」 fi d3vi， (3.  1)
  niV＝ niVi ＝? vi fi d3vi， (3.  2)

  niε1＝∫(mi/2)(vrV)2f且d3v且.        (3. 3)

  Therefore， we might assume the form of the distri-

bution function with the consistency as

  fi＝ni(3mi/4 z E i)〈3i2) exp ｛(一3mi/4 E i) (vi-V)2｝. 

                                       (3.  4)

  Note that (3.  4) is the same form of the the local

equilibrium distribution function.  Strictly speaking，

(3.  1)， (3.  2) and (3.  3) are the necessary condition of

(3.  4) .  Then， there may be other forms of the distribu-

tion function satisfying (3.  1)， (3.  2) and (3.  3) at the

same time.  Since the distribution function is obtained

with the consistency， it is impossible to determine the

number density， barycentric velocity and the energy
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density as the function of the position and the time. 

  To do so， we need a kinetic equation for the

distribution function such as

  D，f，＝2， C(f，，f，)， (3.  5)

where

  D， ＝＝ (a/at) 十vi・ (a/ar) 十 (F， (r，v， ， t) /m，) ・ (a/av，) ，

                                        (3.  6)

  C(fi，fj)?d3vj f dS)ij gij c ij ［f'tf'j-fifj］.  (3. 7)

  Eq .  (3.  5) is the Boltzmann equation for multi-com-

ponent dilute gas and the conventional notations are

used.  gij is the absolute value of the relative velocity

vi-vj and cij is the cross-section.  We then obtain the

coupled differential equations ， i. e. ， the evolution

equations for the macroscopic variables in the follow-

ing.  The streaming operator Di is rewritten as

  Di ＝ (d/dt) 十ci・ (a/ar) 十 (Fi (r，vi ， t) /m，) ・ (a/av，) ，

                                        (3.  8)

where the substantial derivative and the relative

velocity are defind by

  d/dt ＝a/at十V・ (a/ar)， (3. 9)

  c，＝v，一V.  (3. 10)
  Let 4 t(n)E4i［''］ (r，vi，t) be the microscopic quan-

tities which is the n-th rank tensor and let the integra-

tion of 4 i('') multiplied by the distribution function be

Ei［n). 

  :. ，(n)?e，(n］ f， d3v，.  (3.  11)

  The evolution equation for Ei ［'') is in general written

as

  (d/dt) :. ，(n) ＝一:. ，(n) (a/or) .  V一 (a/ar) .  e t(n＋i)

           ＋B， (n］＋A， (n］＋2jA，j (n)， (3.  12)

where

  ＠，(n＋i)＝J c，gi(n) fi d3vi， (3. 13)

  B1〔n〕＝∫(D1ξi〔n〕)f且d3vi，          (3. 14)

  A，(n)＝ f｛(a/ar) ・v， 十 (a/av，). (F，/m，)｝ 4，［n］ f， d3v，，

                                       (3.  15)

  A，j cn)＝J 8，(n) C(f，，fj) d3v，.  (3.  16)

  The e i C'''i］ represents the flow of the Ei(''］.  For

example， Qi is taken as the flow of the energy ni E i in

the case that 4 i(O) ＝ (mi/2)ct2 and called the heat flux . 

The Bi('') can be calculated explicitly.  The Ai［'') is

zero， since r and vi are independent variables and the

force acting on a molecule of the i-th component does

not depend on the velocity vi3).  As to the Boltzmann
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collision integral， the following property associated

with the， H-theorem is well known‘). 

  2，2jA，」(n)＝2，2j f 4，(n) C(f，，fj) d3v，

    ＝2，2j f (4，(n)＋gj(n］一e'，(n］一4tj(n)) C(f，，fj) d3v，. 

                                        (3.  17)

  If 6 i一 is replaced by (ln ft)， it is easy to see that

-2i 2j Aij ＄O， where the equality holds only for

f'' f'j?'fj'

  By using (3.  12)一(3.  17)， we obtain the evolution

equations for the number density， the barycentric

velocity and the energy density as follows ;. 

  (d/dt) ni＝一ni (O/ar) ・V， (3.  18)

  mtni(d/dt)V＝一(a/ar) ｛(2/3)ni E i｝十 J Ft ft d3vi，

                                        (3.  19)

  ni (d/dt) E t＝一(2/3)ni E i(a/ar) . V十 f ct. Ft fi d3vt. 

                                        (3.  20)

  Note that the evolution equations are closed coupled

equations with the five unknown macroscopic varia-

bles (ni，V， E i) as functions of the position and the

time.  We may solve these equations in principle with

the given boundary and initial conditions. 

  Hence， we.  review the the idea of the method used. 

The enough macroscopic variables which describe the

system in. terms of the molecular expressions are taken

and the form of the distribution function is expressed

with the consistency.  Since the evolution equations

obey the kinetie equation describing the system con-

cerned， say， the Boltzmann equation for dilute gas，

the coupled differential equations for the evolution of

the macroscopic variables are derived with the kinetic

equation.  By solving them with the boundary and the

initial conditions ， we obtain the complete information

on the system. 

4.  The distribution function with the diffusion

   flux， the stress tensor and the heat flux in

   addition to the previous 3 independent macro-

   scopic variables

  If a system can be described by the number density ，

the barycentric velecity and the energy density only，

the local equilibrium distribution function is an exam-

ple which satisfies the consistency.  We extend the case

where a system can be represented by the diffusion

flux ， the stress tensor and the heat flux in addition to

those mentioned in section 3.  The first problem is to

find out the forrn of the distribution function with the

consistency.  The form is not unique as discussed

before.  Therefore， we may impose the conditions to

it such that the second law of thermodynamics is

satisfied.  This point will be discussed in section 5. 

  Now， let's rewrite the definitions of the macro-

scopic variables in terms of the relative velocity ci as

follows :
       '

         ni ? fi d3ci， (4. 1)

    nt (Jt/mini)＝Ict fi d3ci， (4. 2)

    (2/mi)niEi＝Jci2 fi d3ci， (4. 3)

     Pi/m，?c，c， f， d3c，， (4. 4)

  (2/mi) (qi-hi'Ji)＝Icict2 fi d3ci.  (4. 5)

  We follow the Grad's thirteen moment method to

find out the distribution function for multi-component

dilute gas， where nt， Ji， E i， Pi and qi are taken as

independent macroscopic variables.  The indepen-

dence appears in the fact that we . choose the distribu-

tion function which automatically satisfies the defini-

tion of the macroscopic variables.  The distribution

function in this method can be expanded in terms of

Hermite polynomials，. 

  fi＝nt (3mi/4z E t)(3'2) exp ｛ (一3mi/4 E t)ci2｝

            × ［1十an'Hii十a2i : H2i十a3i'H3t］，

                                         (4. 6)

where

  H，，＝V(3m，/2 E，) c，， (4. 7)

  H，，＝(3m，/2 E，) c，c，一U， ・ (4. 8)

  H，i＝V(3m，/2 E，) ｛(3m，/2 E，)c，2-5｝ c，.  (4. 9)

  If we include the higher order Hermite polynomials ，

we cannot determine the coefficients without introduc-

ing the new macroscopic variables.  Therefore， (4. 6)

is a suitable choice and valid for small ci .  In order to

obtain the coefficients at's， we carry out the integrals

of (4. 1)一(4. 5) with the distribution function given by

(4. 6)，

which yields

  ni (Ji/mini)＝ V(2 E t/3mi) nia''， ， (4. 10)

     O＝a2i:U， (4. 11)
  Pi/mi＝ (2 E i/3mt)niU＋(4 E t/3mi) ntS2i， (4. 12)
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(2/mi) (qi-hi'Ji) ＝5ni (2 E i/3mi)(3'2) (aii十2a3i) ，

                                      (4. 13)

where

  S2i＝＝ (a2i＋a2i‘)/2.  (4. 14)
  It is clear that the transpose of the stress tensor is

the same as itself， i. e. ， Pi＝Pit.  We assume that a2i

is also symmetric.  By solving these equations， we

obtain

  aii＝ V(3mi/2 E i) (Ji/mini)， (4. 15)

  a2i＝ (3/4 E ini) ｛Pi一(2/3)EiniU｝， (4. 16)

  a3i＝ (1/5) (qt/mini) (3mi/2 E ，) (3t2)

  一 V (3mi/2 E i) ｛ (1/5) (3mi/2 E i)hi＋ U/2｝・ (Ji/mjni). 

                                      (4. 17)

Therefore， the distribution function is denoted by

  fi ＝＝ ni (3mi/4 z E i) (3i2) exp ｛ (一3mi/4 E i) ci2｝

     × ［1十 (3mi/2 E i) (Jt/mini) 'ci

  十 (3/4 E ini) ｛Pi一(2/3) E iniU｝ : ｛ (3mi/2 E i) cici-U｝

  十 (3mi/2 E i) ｛ (3mi/2 E i)ci2-5｝ ci' ［(1/5) (3mi/2 E i)

  × (qi/mini)一｛ (1/5) (3mi/2Ei)hi＋U/2｝・ (Ji/mini)］ ，

                                      (4. 18)

with the conditions Pi : U＝2Eini and 2iJi＝O.  The

enthalpy hi is represented by other macroscopic varia-

bles and the the nonequilibrium contribution is taken

into account .  This is the same distribution function as

Moreau used on studying a chemical reaction，

although he didn't write it explicitly5). 

  The advantage of (4 .  18) is the following .  lt satisfies

the consistency and enables us to observe how the

macroscopic physical quantities are included in the

distribution function and to see new macroscopic

physical quantities， say， the entropy density in terms

of the given macroscopic variables by the direct

integration over the velocity space .  The change of the

macroscopic variables can be described・by the closed

coupled differential equations in a similar manner. 

5.  Discussion on the distribution function with

   the entropy as a macroscopic variable

  In moment method， we assume the form of the

distribution.  Grad expanded it in terms of Hermite

polynomials and took the thirteen moment approxima-

tion for the distribution function.  His method is

mathematically rigorous and thus it is easy to see the

extent of the approximation.  We take the method

from another point of view related to the entropy .  The

distribution function is written as

  fi?i (ni，Ei， Ji， Pi， qi ;ci).  (5. 1)

  We note that the distribution function depends on

the velocity variable and the integral over velocity

space gives the macroscopic variable .  lf ni ， E i ， Ji ， Pi

and qi are independent variables for the i-th compo-

nent， (4. 1)一(4. 5) denote the identities due to the

consistency as discussed in section 4.  lnversely speak-

ing， if these relations don't hold true with the consis-

tency， they are not independent.  Since the entropy is

Ieft out in (4 .  1) 一 (4 . 5) ， we define it by the Boltzmann's

H with negative sign .  Then ， the H-function is denoted

by

  H＝2，H，， (5. 2)
  Hi＝Hi(ni，ε1，J韮， P，， qi)＝∫(lnfi-1)f且d3c1. 

                                       (5. 3)

  The integral shows that H is not the independent

macroscopic variable， but depends on others.  ln the

thirteen moment method， the entropy is only taken as

a new macroscopic variable and no consideration

about the entropy is paid in the distribution function. 

It seems to be why Grad's method gives rise to the

entropy balance equation inconsistent with Gibbs

relation .  As has been discussed by Eu6) ， it is essential

not to leave out the entropy in the solution method of

the Boltzmann equation in order to construct the

irreversible thermodynamics without the restriction of

near equilibrium . 

  In order to construct the irreversible ther-

modynamics based on the Boltzmann equation by

moment method， we first choose the adequate in-

dependent macroscopic variables with the entropy .  To

find out the form of the distribution function with the

consistency on those macroscopic variables is neces-

sary.  The evolution equations for the macroscopic

variables leads to the modified form of the Gibbs

relation and the nonlinear transport coefficients are

obtained from the coupled differential equations.  The

difficulty to construct the irreversible ther-

modynamics along this line is mainly to find out the
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distribution function with the consistency，on the

entropy . 
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