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ON BOUNDING SUBSETS OF LOCALLY
CONVEX SPACES

Mitsuhiro MivaGr*

Abstract

In the present paper, we shall describe an example of a non-separable and non-reflexive Banach space
whose bounding subsets are compact subsets, Moreover, We shall prove that, if Cz and Cr are respec-
tively bounding subsets of metrizable locally convex spaces E and F, then the subset CpXx Crp of
Cartesian product EX F is also a bounding subset of ExF,

Introduction

Let E be a locally convex topological vector space over the field C of complex numbers, If E is finite
dimensional, every bounding subset of E is compact, Moreover, S, Dineen [ 3] showed that the bound-
ing subsets of a separable or reflexive Banach space are the compact subsets, On the other hand, S.

Dineen "4 ] proved that there is a non-compact bounding subset of />,
Bounding subsets of locally convex spaces

Let E be a complex locally convex space, and U be an open set in £, When F is a complex locally
convex space, H(U; F) denotes the set of all holomorphic mappings on U into F, If F=C, H(U; C)
is briefly denoted by H(U).

DEFINITION 1. A closed subset C of U is said to be a bounding subset of U if
[fllg = sup | f(x) <<4oo

for each f & H(U).

ProPOSITION 2. Let F be a locally convex space. A closed subset C of U is a bounding subset of U
if and only if f(C) is a bounded subset of F for each f & H (U; F).

Proor, First, we suppose that a closed subset C of U is bounding. Now we assume that there is a
holomorphic mapping f < H(U; F) such that f(C) is unbounded in F, Then there is a sequence

{Xn 1

n=1

in C such that {f(x»)}>_, is unbounded. Hence, we have a continuous linear mapping ¢ on

F such that

sup Lo (f (xn)) | =oo

Since ¢of & H{U), this contradicts the hypothesis that C is a bounding subset of U.
Conversely, we suppose that f(C) is a bounded subset of F for each f & H(U; F)., we assume
that C is not a bounding subset of U, Then there is a holomorphic function f & H(U) such that
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Il fllg=c<. Let p be a continuous seminorm on F. we define a holomophic mapping # € H (U; F)
by A(x) = f(x) -a for x € U, where a is a point of E such that p(a)== 0. Then we have

sup poh (x) =1 flig+p(a) =co,
This contradicts the fact that #(C) is bounded in F. This completes the proof.

S. Dineen [3] showed that every bounding subset of a separable or reflexive Banach space is a com-
pact subset. However, we have a non-separable and non-refexive Banach space whose bounding subsets
are compact subsets, Now we shall describe it.

Let 7 be an uncountable index set. [>°(7) denotes the set of all complex valued bounded functions on
I. We endow [®(l) with the supremum norm | «| . Then, I>=(I) is a Banach space. Let x & [=(]).
When x; denotes x(i) for i & I, we can represent x by (xi) icz. Let Co(I) be the closure of the

subspace
{(x:) ter € I=(1I) ; there exists a finite subset J of I such that x;=0 for every i € I-J}
Then Cy(I) is a closed subspace of /=>(I). Hence, Cy(I) is a Banach space, equipped with the norm
Il » || induced from I>=(I),
LEMMA 3. Let N be the set of natural numbers., Let Co(N) be the linear space

{(’fn);f_l ; an Cr n= 1 )2,...’ llm Xn =0}

n—>0

with the supremum norm/|| « || . Let ¢, be a nonnegative number for n=1, 2, ... suchthatez—>0Q as n—co,

Then the subset

V=A{Gwy_ , € Co(N) ;5 |xn =enforn=1,2,... }

is compact,

ProoF. Let (xfl)j;;l = xt & V for k=1, 2 ... . Since the sequence {x’fl };‘;1 is bounded in C,
we can select a convergent subsequence {xllk} ol of the sequence {x’el bl 1 Next, we can select a conver-
gent subsequence {xg’ﬂ};‘;l of the sequence {x fz’“};_l. Similarly, we can inductively select a convergent
subsequence {x%’ﬁ”"}f:l of the sequence {xm’il};‘;l for m=1, 2,... . Thus we can take a subse-

quence {x'"’f};‘;l (m=1, 2,...) of the sequence {x¥}> _, with the following properties

k=17

(i) the sequence {xz’f};‘:l converges, for n=1, 2,...,

(ii) the sequence {xmk};f!l is a subsequence of the sequence {x(m- 1)"};":1_
Then we get the subsequence {x*k}> 1 of the sequence {x*}> 1
By our choice of the sequence {x“ﬂ},‘;":l, the sequence {xﬁk};‘;lconverges, forn=1,2,... . Let a point
x0 & C be a limit point of the sequence {xﬁk};ll, forn=1, 2,... . Let xX0 = (x0) = .
We shall verify that the sequence {x*¥}: , converges to the point x0, For every integer n and every
real number ¢ >>0, there is an integer kp such that

| xke — x0 | < e

for every kK = ko. Therefore we have

Kk
|x}3|§s+[xn | < e + en.

Since ¢ is arbitrary, it follows that | x0 | < en for n=1, 2,..
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Thus x© belongs to the set ¥, Next, for every positive number &, there is an integer no such that

) - . . . . . .
sn<7 for every n == ng, since lim e,= 0. Since ’lclm xkk = x0 forn =12,..., there is an integer
—>co

n-—>o0

k1 such that
0
| xiczk — x9 I<?

for k = ky, n =1, 2,..., ng. Since x* and x© are in V, for n = ny, we have

kk kk ~ 5
| xk x| =1 xE ]+ [ x0 [ < en + en << 0

for k =1, 2,... . Hence we have

kk _ 01 = kk — 0
| x x0 1| sunp | xk x0 |
< max (sup |x¥ — x0 |, sup]| x¥*¥—x0 |)
1<n<no n n n>no n n

=< max(%, 6) =0

for every k = k. Thus the sequence {xkk} e , converges to x0.

This implies that ¥ is compact.

fori& 1}, Then W is a compact subset of Co(l),

LEMMA 4. Let (ei)icr € Co(I) with e = 0 fori & 1. Let W = { (xi) ic1 € Co(D) 5 | xi| < &

Proor, Let J = {i €7;¢; == 0}. Then J is a countable subset of I. Hence, we may assume that
W is contained in the closed subspace Cy(J) of Co (I). By Lemma 3, W is a compact subset of
Co(J). Consequently, W is compact subset of Cq (/).

THEOREM 5. If B is a bounding subset of Cqo(I), then B is compact.

PrOOF, For j € I, a real number ¢; == ( is defined by

sup { [ xj | ;5 (x)ier € B }.

Suppose that there are a real number & >0 and a countable infinite subset J of I such that ¢; > 26
for j&J. Then, there is a point x/=(x7;);<r& B for jEI such that | x/; | =6. Let A = {xi;je J},
and J; = {j € I; there exists a point (x;)ic;r of 4 such that x; == 0}. Then J; is a countable set. If the
set A is an infinite set, 4 is not a relatively compact subset of Co(J1). By S. Dineen [3], the closure
A of A in Cy(J1) is not a bounding subset of Cy (J;). The closed subspaces Co(J1), Co(I—J;) of
Co(I) are topological supplements, Since B is bounding in Co(J), B[ Co(J1) is a bounding subset of
Co(J1). By S. Dineen [3], B(1Co (J1) is a compact subset of Cy (J1). Since 4 is contained in
B(\Cy(J1), this contradicts the fact that 4 is non-compact. Thus A is a finite set. Then there are a
countable infinite subset J' of J and a point x= (x;)ic1& A such that | x; | = ¢ for j& J'. Then we
have x & Cy(1). This contradicts x € Co(I). Thus J= {4cr;e; >0} is a countable subset of I,
besides (e:)icr belongs to Cq (I). Hence, by Lemma 4 the subset {(x:)ic1 € Co (I) ; |x:|<e; fori € I}
is compact. Since B is contained in this subset, B is compact,

Thus we gain an example of a non-separable and non-reflexive Banach space whose bounding subsets

are compact subsets.

ProrostTION 6. Let E be a Banach space whose bounding subsets are nowhere dense. Then there

exists a bounded sequence of E such that the sequence is not a bounding subset of E.
ProOOF. A symbol | « || denotes a norm of E. By assumption, the subset V={ x&E; | x| <1} is not
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bounding. Hence there are a holomorphic function f& H(E) and a sequence { x» }g;l of V such that

the sequence { f(xx) }o_ L is unbounded in C. We can select the sequence { xn }2_ , Without an accu-

mulation point, Then the sequence { x» };j;l satisfies this proposition.
Finally, we shall discuss a bounding subset of Cartesian products of metrizable locally convex spaces.

THEOREM 7. Let E and F be metrizablc locally convex spaces. If Cr is a bounding subset of E, and
Cr is a bounding :ubset of F, then Cp X Cr is also a bounding subset of a Cartesian product E x F,

ProoF, The compact-open topology on the vector space of all continuous functions on F induces a
topology r on H(F). The bornological topology on H(F) associated with ¢ is denoted by ;. Letf & H
(E X F). We define a mapping u ¢ E — H(F) by u(a)(y) = f(a, y) for a E, yv& F. By G.
Coeuré [[17, since E is metrizable, we can verify that the mapping u: E—~ (H(F), t) is holomorphic.
Moreover, since F is meftrizable, by (1], « is a holomorphic mapping from into (H(F), ). Hence
the image u(Cg) is a bounded subset of (H(F), t3) by Proposition 2., We define a seminorm on
H(F) by

p(g) =llgll =~ =sup |20 |
i Yy CUF

for g & H(F). Since F is metrizable, by S. Dineen [2], (H(F), ) is a barrelled space. For a fixed
point y in F, the linear function g —g(y) of H(F) is continuous with respect to the topology <.
Hence, the subset

V) ={g € HF); g1 <1}
of H(F) is a barrel in (H(F), ). The set

By,={g& H(F);p(g =1}

is absorbing. Thus, since

B, = MV,
yeCr

By is a barrel in (H(F), ). Since (H(F), <) is barrelled, B, is a neighborhood of 0 & H(F). Hence
p is continuous on (H(F, ;). Hence there is an M > (0 such that
sup p(u(x)) == M.

x € Cg
Since
sup p(u(x)) = sup sup | f(x,»1,
xECE x&=Cr y=Cr
we have
| fe, ) | =M

for all (x,y) ©CexCpr. Consequently, CrxCr is a bounding subset of E X F,
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