気ほう流の強制対流伝熱に関する研究

(第1報,ボイド率分布と熱伝達係数の実験的関係)

中里見正夫*·田原 和雄**•浜新 正博***

Forced Convective Heat Transfer to Air-Water Bubble Flow

(1. Experimental Results on The Relationship Between Radial Void Fraction Distribution and Heat Transfer Coefficient)

> Masao NAKAZATOMI, Kazuo TAHARA and Masahiro HAMASHIN

Abstract

The relationship between a radial void fraction distribution and a heat transfer coefficient in upward air-water two-phase bubble flows is demonstrated based on the experimental results. The two typical modes in void fraction distribution were observed corresponding to the two kinds of bubble generators. One is characterized by the existance of a peak in void fraction near to the wall and the other on the center line of the pipe. The heat transfer coefficients for the former are about 20% higher than those of the latter.

1.まえがき

気流二相流における伝熱には,沸騰を伴ういわゆる沸 騰流の伝熱と沸騰を伴わない空気・水系のような二成分 系の伝熱とがある.これまでの二相流の伝熱に関する研 究のほとんどが前者に属するもので,後者はきわめて少 ない.これは工業上にみられる二相流の伝熱には相変化 を伴う場合が圧倒的に多く,後者のような系での実際例 が少ないためであろう.

このような背景があるにもかかわらず,あえて後者に 着目した研究を行うのは次の理由によるものである.

気ほう流において流動機構に密接に関係しているはず の相分布特性が気ほう発生過程の微妙な相違によって大 幅に異なることについての認識を深めることにある.こ れについで,たとえば相分布が既知であったとしても, 半径方向の運動量輸送のメカニズム,特に壁面近傍のメ カニズムをどのように考えればよいかという課題であ

*** 宇部興産会社

る. 測定の困難さから,液速度分布と気ほうの複雑な挙動との関係については,まだ十分な理解が得られていない. このような流動機構の面からのアプローチのむずかしさを考え,これを伝熱機構の面から見直してみようとしたのが本研究の目的の一つである.

最初に述べたように、気液二相流の伝熱は沸騰流のそ れが主として議論されているが、沸騰流における気ほう の存在、特にサブクール沸騰時の気ほう底層が強制対流 伝熱の増進に果す役割を理解する上において二成分系二 相流に関する本研究結果の資するところは少なくないと 思われる.

本実験では大別して2種類の気ほう発生方法(ポーラ ス管と毛細管)を用い,これによって実現された気ほう 群による相異なる相分布が熱伝達係数にどのように影響 するかを実験によって明らかにする.

2. 使用した記号

- D :管内径 m
- h_l :液体の速度 $l=u_{lo}/(1-\hat{a})$ に対応する単相流

^{*} 宇部工業高等専門学校機械工学科

^{**} 広島大学工学部機械工学科学生

```
熱伝達係数 kcal/m<sup>2</sup>・h・℃
```

```
hu, : みかけの液体速度 uto に対応する液単相流熱伝
達係数 kcal/m<sup>2</sup>・h・<sup>°</sup>C
```

- *hTP*:二相流の熱伝達係数 kcal/m²・h・°C L :管軸方向の長さ m
- Nu: ヌセルト数
- Pr:プラントル数
- (-dP/dL): 圧力こう配 kg/m²/m
- q : 熱流束 kcal/m²·h
- R :管半径 m
- $Re: レイノルズ数, \hat{u} \cdot D/v,$
- r :管中心からの距離 m
- t :温度 °C

 u_1 :液体の速度, $u_{1o}/(1-\hat{a})$ m/s

- ugo:みかけの気体速度 m/s
- *u*_{lo}:みかけの液体速度 m/s
- y :管壁からの距離 m
- α :ボイド率
- **α**:管断面平均のボイド率
- β : 気体体積流量比, ugo/(ugo+ulo)
- ν, :液体の運動粘性係数 m²/s
- τ : せん断応力 kg/m²
 - 添 字
- b :バルク
- in :加熱部入口
- out :加熱部出口
- w:壁面

3. 実験装置および実験方法

実験装置の概要を図1に示す.水はオリフイス0を経 たのち, 鉛直に設置された整流部を通り入口温度を測定 され,気水混合部Mに至る.一方,気体は浮遊式流量計 Fを経て気水混合部へ導入される.ここで気ほう流が形 成され,供試管内を上昇する.

供試管は鉛直に設置された円管で,内径16.9mm,全 長3.1mである.加熱区間は長さ L=970mm(SUS 304) で,この部分が交流電源 TR によって直接加熱される. 管壁温度を測定するため加熱管の外壁には管軸方向に沿 って14対のクロメル・コンスタンタン熱電対が取り付け られている.加熱区間の上流と下流側には流れの視察の ためアクリル管を接続した.また,加熱区間の入口と出 口には,断面内のボイド率と気ほうの通過ひん度分布を 測定するために,L形の点電極プローブがそう入されて いる. 針状プローブには0.2mmの白金線が用いられた.

図1. 実験装置の概要

二相流体の半径方向温度分布を測定するために,加熱部 出口から管内へシース熱電対(外径0.25mm)がそう入 されている.その先端は点電極プローブと同様に上流側 へ直角に曲げられ,加熱区間内へ約50mm入った断面内 を半径方向に移動可能となっている.圧力こう配測定用 の圧力タップは加熱区間の入口,中央部および出口の合 計3箇所に取り付けた.

管の断面内相分布は気液混合部の構造の違いによっ て大きく相違する可能性のあることが知られているの で⁽¹⁾,同一水流量のもとでも相分布の著しく異なる気ほ う流をつくる目的で,図1の(b-1)と(b-2)に示し た2種類の気水混合法が採用された.図1の(b-1) は供試管の内径に一致したポーラス管を用い,管壁から 管内へ気ほうを発生させる方法である.これに用いたポ ーラス管は長さが200mm,平均気孔寸法が4と70ミク ロンの2種類である(以下にはこれらを記号 P4 およ び P70 で表わす).同図(b-2)は供試管の中心に取り 付けた内径2.0mmの毛細管を通して管の中心部へ気ほ うを導入する方法である(以下にはこれを記号 Ca で 表わす).

おもな測定量は,熱流束 q,加熱管の外壁温度,加熱 区間の入口と出口における流体の混合平均温度 thin, thout,流体の断面内温度分布,ボイド率分布,気ほう の通過ひん度分布および圧力こう配(-dP/dL)であ

る.

4. 実験結果

水単相流の測定結果を表1に,二相流(主として気ほう流領域)の測定結果を表2~表4にそれぞれ示した. 表2は気水混合方法としてポーラス管 P_4 (平均気孔寸法4ミクロン)を用い,一つの気・水の組合せに対して 非加熱の場合と熱流束を $q=(1 \sim 10) \times 10^4 \text{kcal/m}^2 \cdot \text{h}^\circ \text{C}$ の範囲で変化させた結果である.表3は毛細管 Ca (内径2.0mm)から空気を吹き込んだ場合の測定結果 で,気・水流量組合せは表2とほぼ同じである.表4は 表2および表3の流量組合せとほぼ同じであるが,水の 入口温度が $t_{\text{lin}}=20 \sim 29^\circ \text{C}$ の測定結果で,ポーラス管 の平均気孔寸法4と70ミクロンの2種を用いた場合と毛 細管を用いた一例を含むものである.

4・1 ポイド率と気ほうの通過ひん度分布

4・1-1 非加熱時の分布

図2は加熱部出口断面において測定した非加熱時のボ イド率 α と気ほうの通過ひん度 nの測定例である. 図2 (a), (b)および(c)はほぼ同一の気水流量 ($u_{lc}\cong 1.0m/$ s, $u_{go}\cong 0.30m/s$)のもとで気水混合部を3とおり変え たもので, (a)図は毛細管 Ca, (b)図は平均気孔寸法4 ミクロンのポーラス管 P4, (c)図は70ミクロンのポー ラス管をそれぞれ用いた結果である.なお,実験におい ては測定断面における相分布の軸対称性を確認するため に十文字方向に点電極プローブを移動し測定を行った. 後出する断面平均ボイド率の算出にはこの4方向の測定 値を用いた.

毛細管を用いて気ほうを発生させた場合((a)図)の α とnの分布は管の中心部でピークを示し,管壁に近づ くにつれて急激に減少した形(コア気ほう流^(a)という) となっている.

これに対し、ポーラス管を用いて気ほうを発生させた 場合((b)と(c)図)の分布はいずれも管壁の近くでピー クを示し、管の中心部に極小値をもっていて、毛細管の 場合の結果(a)図と比較して顕著な差異がある.このよ うにボイド率分布のピークの位置が管壁に接近している 流れを底層気ほう流^(a)と呼び記号 BL で表わし、コア気 ほう流は Bc、両者の中間的分布をもつ流れには BT を 用いて表わすことにする(表2~表4).

ポーラス管の平均気孔寸法を4から70ミクロンに変え ても両者の間で相分布形はほとんど変化しない((b)と (c)図).その理由は二つの流れの気ほう群の寸法構成が よく類似しているためであろう.表5は,図2に対応

ugo m/s	u ₁₀ m/s 0.2564 0.5091 0.4626 1.081 0.9263 1.828	tlin °C 6.2 8.7 7.6 8.70 8.70 8.70 8.70 8.90	tlout °C 33.4 20.78 22.50 14.38 14.55 12.00	kcal/m ² h x10 ⁴ 9.40 9.40 10.23 9.86 9.86 9.07	(-dp/dL) kg/m ² /m 1004.0 1017.0 1017.0 1083 0 1069.0 1121.0	R out	tw °C 80.44 60.34 61.78 37.68 41.49 27.47	t _b °C 16.58 17.30 12.03 10.92	$\frac{h_{TP}}{kcal}$	Re 7978 12650 11760 20530 18200 30290	$\begin{array}{c} h_1 \\ kcal \\ m^2h^0c \\ 1669 \\ 2148 \\ 23300 \\ 3886 \\ 3430 \\ 5480 \\ 5480 \end{array}$	hleal 1482 1482 2325 2170 3666 3300 5156	h10 kcal 	τw kg/m ² 0.0147 0.0718 0.0718 0.351 0.351 0.292	flow regime
	1.709 0.4718	7.76 26.90	11.90 40.75	9.03 10.36	1227.0 1016.0		27.46 74.40	10.45 35.92		28040 15950	5310 2692	4865 2550		0.959 0.0676	
	1.090 1.092	25.80 24.50	32.55 30.60	9.52	1079.0 1081.0		52.00 48.80	30,20 28.46		28340 27140	4370 4450	4358 4269		0.334 0.342	

		表	2 须	ほう流の	実験データ	(気水混合部:	ポーラス	管P4,7	水入口通月	€ t _{lin} =	6~10°C	6				
Run No.	ugo m/s	ulo m/s	°C	t _{lout} °C	q kcal/m ² h x10 ⁴	(-dP/dL) kg/m²/m	$\stackrel{\scriptstyle \scriptstyle \wedge}{\alpha_{\rm out}}$	°C C	t ^b C	hTP kcal m ² h ⁰ c	Re	hı kcal n ² h ⁰ c	Reio	h ₁₀ kcal n²h ⁰ c	τw kg/m²	flow regime
P 4 -114-126 P 4 -134-126	0.1350 0.3433	0.2638 0.2638	6.2 6.2	32.9 33.2	10.58 10.78	738.2 608.2	0.325 0.452	43.81 42.15	23.62 23.80	5238 5877	8790 10780	1780 2103	5936 5905	1299 1299	0.267 0.254	Bc S-B
P 4 -290-138	0.08862	0.3815	10.14 10.14	10.14	8.64	875.4 869.7	0.155				5961 12700	2244	4960 10730		0.183 0.104	Bc
P 4 -113-148	0.1310	0.4793	7.85	22.62	10.25	847.8	0.210	39.24	17.50	4715	12490	2424	9807	1997	0.244	Вт
а Р 4 - <u>1</u> 33- <u>1</u> 48	0.3265	0.4760	7.5	7.5		724.5	0.379	:		:	9253		5746		0.437	\mathbf{B}_{T}
s. F	0.3325	0.4836	7.92	22.6	10.21	708 5	0.402	35.25	17.51	5755	15730	2944	9420	1953	0.467	Вc
G P 4 -013-145	1.271	0.4483	10.14	10.14	:	603.4	0.666	:	•	:	17450	•••••	58 40		1.138	ц
of	1.331	0.4607	10.14	22.10	8.64	502.0	0.650	30.45	18.01	6946	24500	4234	8570	1827	0.642	ы
G P 4 -112-153	0.1300	0.5146	7.5	7.5	:	876.0	0.198	:	:	:	7746		6212	:	0.313	\mathbf{B}_{T}
Tee	0.1117	0.5387	6.72	6.72	•	899.2	0.170	:	:	:	7633		6335		0.292	\mathbf{B}_{T}
ch.	0.1169	0.5387	6.72	9.29	2.17	885.2	0.175	14.51	8.39	3547	8740	2011	7214	1724	0 254	ΒT
Col	0.1183	0.5350	6.83	12.98	5.16	877.7	0.180	24.01	10.82	3911	10250	2197	8403	1874	0.244	$\mathbf{B}_{\mathbf{T}}$
1.,	0.1202	0.5313	7.07	19.03	96.6	871.2	0.180	36.74	14.85	4551	12390	2439	10160	2081	0.216	$\mathbf{B}_{\mathbf{C}}$
No.	0.1318	0.5261	6.0	19.73	10.17	866.9	0.195	37.29	14.95	4552	12700	2480	10160	2074	0.262	$\mathbf{B}_{\mathbf{C}}$
5 P 4-130-154	0.2906	0.5350	6.28	6.28	:	767.1	0.345	:			9487	:	6214	:	0.474	$\mathbf{B}_{\mathbf{T}}$
Ma	0,2945	0.5361	6.28	8.88	2.19	759.8	0.340	12.70	7.98	4629	10580	2364	6980	1695	0.422	Вτ
rch,	0.2942	0.5350	6.45	12.40	4.99	754.1	0.350	20.21	10.15	4957	12170	2559	7910	1813	0.440	$\mathbf{B}_{\mathbf{C}}$
197	0.2966	0.5350	6.59	18.42	9.92	741.8	0.345	32.28	14.30	5519	14730	2840	9650	20.5	0 367	$\mathbf{B}_{\mathbf{C}}$
'8	0.3319	0.5353	6.0	19.1	9.69	743.6	0.380	33.05	14.55	5240	15790	2992	6190	2042	0.522	Bc
P 4 - <u>2</u> 83-198	0.08244	0.9753	6.30	6.30	•	1054.0	0.075		:	:	12250		11330	:	0.545	ВĹ
	0.08366	0.9782	6.30	12.87	10.08	1033.0	0.075	32.25	10.48	4629	18330	3410	16960	3205	0.459	$\mathbf{B}_{\mathbf{T}}$
P 4 -111-198	0.1107	0.9808	8.5	8.5		1044.0	0.093	:		:	13440		12190		0.576	$\mathbf{B}_{\mathbf{L}}$
	0.1105	0.9808	8.5	9.13	0.969	1044.0	0.091	11.22	8.91	4194	13950	2951	12680	2734	0.570	Вц
	0.1108	0.9808	7.89	9.26	2.11	1036.0	0.095	13.67	8.78	4309	14420	3008	13050	2777	0.553	$\mathbf{B}_{\mathbf{L}}$
	0.1108	0.9808	8.15	11.14	4.60	1032.0	0.095	20.91	10.10	4253	16190	3205	14660	2960	0.537	Вц
	0.1106	0.9808	8.35	15.02	10.26	1021.0	0.092	34.47	12.70	4712	19650	3565	17840	3300	0.477	Вт
	0.1283	0.931	7.42	14.85	10.07	0.166	0.120	32.35	12.12	4978	18840	3471	16560	3130	0.469	Вт

中里見正夫・田原 和雄・浜新 正博

Run No.	ugo m/S	u _{lo} m/s	t _{lin} °C	tlout °C	q kcal/m²h x10⁴	(-dP/dL) kg/m ² /m	aout	°C c	° t°	h _{TP} kcal m ² h ⁰ c	Re	h _l kcal m²h ⁰ c	Re ₁₀	h ₁₀ kcal n²h ⁰ c	τw kg/m ²	flow regime
P 4 -113-011	0.1258 0.1278	1.107 1.085	5.5 5.90	5.5 12.7	 10.51	1056.0 1028.0	0.096 0.110			5030	13860 20690	3770	12530	 3450	0.642 0.583	B L B T
P 4 -130-198	0.2861 0.2933	0.9808 0.9697	6.71 6.71	6.71 7.38		988.4 983.9	0.210 0.215	9.18	7.14	 5039	14600 1 5 050	 3186	11530 11820	 2626	0.838 0.840	В _L ВL
字	0.2998 0.2860	0.9808 0.9734	6.74 6.75	8.18 9.90	2.215 4.808	980.3 970.2	0.215 0.210	11.87	7.68 8.79	5284 5717	16010 17210	3304 3423	13600	2723 2836	0.825 0.761	Вг Вт
邹工業高	0.2863	0.9845	6.82 7 45	13.29 14 80	9.988	948.7	0.218	28.39	11.02	5750	20900	3833	16340	3148 -	0.704	BC BC
金 山 山 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	0.3139	1.085	7.5	7.5		1002.0	0.232				17050	1000	13100		02/.0	B L
。 「 「 「 「 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「	0.3197	1.092	5.90	12.80	9.89	970.0	0.220	28.11	10.40	5587	23200	4165	18090	3414	0.803	Bc
按 7-152-198 出	0.5706 0.5556	0.9734 0.9771	8.0 7.29	8.0 7.93	0.981	977.7 929.0	0.350 0.350	9.39	7	5837	18300 18530	3745	11900 12040	 2653	1.385 1.179	Br Br
第 24	0.5610	0.9734	7.27	8.62	2.066	924.6	0.350	11.69	8.15	5836	19250	3824	12510	2709	1.160	Вг
冯	0.5655	0.9845	7.19	10.27	4.757	907.0	0.340	16.69	9.19	6343	20750	3982	13690	2855	1.044	$\mathbf{B}_{\mathbf{T}}$
昭利	0.5399	0.9808	7.14	13.61	9.957	889.7	0.325	25.34	11.35	7117	23280	4212	15700	3073	0.907	$\mathbf{B}_{\mathbf{C}}$
²² P 4 - 163-193	0.6498	0.931	7.42	14.80	10.20	855.5	0.395	26.80	12.12	6948	25620	4509	15500	3016	1.058	$\mathbf{B}_{\mathbf{C}}$
[±] P 4 - 163-010	0.6223	1.081	8.0	8.0		952.1	0.359	:	:	:	20620		13220		1.314	Вг
月	0.6361	1.092	6.0	12.75	10.92	0.909	0.365	25.98	10.38	7002	27370	4806	17400 3	3345	1.158	Вc
P 4 -010-010	1.069	0.998	5.84	5.84	:	958.3	0.486		:	:	22250	:	11430	:	1.877	$\mathbf{B}_{\mathbf{C}}$
	1.108	1.048	5.84	10.99	8.46	917.7	0.510	21.84	9.20	6700	32020	5505	15700	3113	1.807	н
P 4 -110-016	0.1051	1.559	7.75	7.75	:	1205.0	0,056	:	:		20060	:	18940	:	1.103	Вц
I	0.1052	1.572	7.75	11.79	9.95	1174.0	0.054	25.82	10.38	6446	26520	4682	25090 4	4479 (0.963	$\mathbf{B}_{\mathbf{T}}$
P 4 -128-016	0.2826	1.579	6.65	6.65		1182.0	0.135	:	:		21450		18560 .	:	1.339	Вц
	0.2843	1.573	6.65	7.54	2.18	1179.0	0.137	10.59	7.23	6482	22750	4404	19630 3	3914	1.335	Вц
	0.2816	1.579	6.70	8.74	5.04	1197.0	0.145	15.22	8.01	6988	24850	4639	21250 4	4093	1.445	\mathbf{B}_{L}
	0.2884	1.576	6.82	10.82	9.88	1164.0	0.140	23.20	9.43	7175	27880	4933	23970 4	4371	1.280	$\mathbf{B}_{\mathbf{T}}$

その1)

(続き

表 2

気ほう流の強制対流伝熱に関する研究

		-10		.* . •	表 2 (続き	Z02)		:		-					• *		20
Run No.	ugo m/s	u10 m/s	tlin °C	tlout °C	q kcal/m²h x10⁴	(_dP/dL) kg/m²/m	$\stackrel{>}{lpha_{\mathrm{ont}}}$	°C °C	°C °C	hrP kcal m ² h ⁰ c	Re	h1 kacl m ² h ⁰ c	Reio	h ₁₀ kcal n ² h ⁰ c	`⊤w kg/m²	flow regime	
P 4 - <u>1</u> 55-016	0.5347 0.5425	1.560 1.553	6.95 6.95	6.95 11.13		1156.0 1124.0	0.235 0.233		9.67	8143	24180 30530	5310	18500 23400	4292	1.652 1.508	В _г В	
P 4-010 016	1.036 1.033	1.642 1.687	5.92 5.92	5.92 9.26		1238.0 1163.0	0 321 0.305	20.11			27750 35420		18840 24620	4499	2.362 1.977	Ъ с	
P 4 -110-018	0.1169 0.1193 0.1196	1.863 1.895 1.716	8.0 6.0 8.1	8.0 9.8 11.93	 10.71 10.04	1236.0 1219.0 1227.0	0.0585 0.0590 0.0645	23.60 24.14	 8.43 10.69	 7062 6905	24200 30410 29470	5293 5081	22780 28620 27570	5042 4817	1.244 1.175 1.232	B L L	1.7
P 4 -130-018	0.3325 0.2946 0.2957	1.858 1.865 1.716	5.8 6.0 8.11	5.8 9.8 12.02	10.55 9.99	1205 0 1211.0 1201.0	0.157 0.130 0.140	22.54 23.76	8.43 10.69	7488 7643	25170 32200 31770	 5552 5413	21220 27840 27100	4942 4769	1.529 1 .44 1 1.441	B B F	
P 4 -155-018	0.5646 0.5819 0.5835	1.839 1.858 1.716	7.5 6.0 8.14	7.5 9.75 12.35	 10.97 10.24	1191.0 1177.0 1185.0	0.233 0.230 0.240	21.48 23.00	 8.43 10.90	 8405 8463	28940 35710 36130	6064 6021	22200 27210 26950	 4879 4762	1.791 1.720 1.796	E C C E E E E E	
		· · · · · ·	B :₩	ほう浙	Bc:コア与 Bc:ゴア与 Br:高級層	気保ら消 気保の消 気気の消	ŢŢ	л с Ч Х С	142	S: X	流	÷					

中里見正夫•田原 和雄•浜新 正博

			表 3	気ほう	流の実験デ-	- タ(気水混行	♪部 ・ 毛紬	僧 Ca,	水入口溫人	蒦 t _{lin} =	7 ~17°C					
Run No.	u _{go} m/s	u ₁₀ m/s	t _{lin} °C	tlout °C	q kcal/m²h x10⁴	(-dP/dL) kg/m²/m	d'out	°C *	¢b °C	h _т р kcal m ² h ⁰ c	Re	hı kcal m ² h ⁰ c	Reio	h _{io} kcal n ² h ⁰ c	τw kg/m²	flow regime
Ca -113-150	0.1328	0.4803	16.6	16.6		851.4	0.187	:	:		9160		7450		0.162	Bc
	0.1372	0.5071	8.70	21.05	9.61	854.9	0.189	39.35	16.81	4263	12690	2452	10290	2073	0.185	$\mathbf{B}_{\mathbf{C}}$
	0.1313	0.4672	7.70	22.82	10.33	846.5	0.186	41.61	17.56	4295	12060	2335	9820	1981	0.137	$\mathbf{B}_{\mathbf{C}}$
Ca -133-150	0.3322	0.4978	13.35	13.35	:	721.0	0.310	:		:	10250	:	7070	:	0.131	B - S
	0.3432	0.5090	8.70	20.85	9.52	721.4	0.310	36.67	16.64	4753	14490	2749	10002	2043	0.133	B-S
宇部二	0.3349	0.4718	7.72	22.75	10.43	695.5	0.353	39.60	17.50	4931	14850	2787	0096	1955	0.205	B - S
業 Ca -113-010 掣	0.1282	1.074	17.0	17.0		1022.0	0.094		:	:	18580	:	16840	:	0.490	$\mathbf{B}_{\mathbf{C}}$
[等功	0.1260	1.077	8.70	14.55	10.03	1011.0	0.092	32.57	12.40	4972	21260	3820	19300	3536	0.393	\mathbf{B}_{C}
(門学	0.1274	0.929	7.35	14.90	10.19	978.0	0.103	34.60	12.15	4539	18800	3441	16990	3174	0.342	$\mathbf{B}_{\mathbf{C}}$
☆ Ca -132-010	0.3219	1.081	16.8	16.8	•	952.5	0.183		:	:	20700	:	16920	:	0.572	Βc
究報	0.3244	1.081	8.70	14.53	9.95	948.5	0.185	29.64	12.35	5754	22910	4109	18680 3	3490	0,564	Вc
告 多	0.3210	0.9313	7.45	15.10	10.34	899.4	0.218	31.42	12.30	5408	21050	3807	16460	3127	0.496	Βc
162-010 162-010	0.6231	1.089	12.75	12.75	:	899.5	0.287	:	:	:	21330	:	15210	:	0.788	B - S
; N?	0.6323	1.077	8.78	14.57	9.87	0.898	0.277	28.03	12.45	6335	25280	4410	18270 3	3400	0.739	B-S
和	0.6410	0.9313	7.48	15.20	10.48	818.0	0.347	30.03	12.40	5944	24850	4357	16230	3099	0.697	B-S
the ca -112-018 年	0.1202	1.839	17.2	17.2	:	1211.0	0.0549	:		:	30910	:	29200		1.124	Bc
≞ 3	0.1184	1.858	8.80	12.15	9.95	1202.0	0.0550	26.01	10.96	6610	32100	5429	30340 5	5190	1.086	$\mathbf{B}_{\mathbf{C}}$
月	0.1198	1.709	7.80	11,85	10.05	1187.0	0.0557	26.03	10.43	6442	29410	5075	27770 4	1847	1.025	$\mathbf{B}_{\mathbf{C}}$
Ca -130-018	0.2954	1.843	14.5	14.5		0.991	0.118	:	:		30710	:	27080	:	1.339	Βc
	0.2937	1.858	8.80	12.05	9.82	1179.0	0.119	24.32	10.92	7326	33670	5679	29680 5	5134	1.259	Βc
	0.2945	1.716	7.85	11.85	10.05	1200.0	0.125	24.49	10 47	7168	31140	5332	27360 4	4808	1.373	Βc
Ca -158-018	0.5815	1.839	14.5	14.5	:	1187.0	0.179			:	32920	:	27030		1.546	B-S
	0.5794	1.846	8.80	12.07	9.71	1167.0	0.185	23.45	10.95	7765	36580	6071	29160 5	5064	1.487	B - S
	0.5823	1.716	7.85	11.93	11.93	1166.0	0.215	23.67	10.50	699L	34370	5785	26980 4	4766	1.610	B - S

気ほう流の強制対流伝熱に関する研究

×				表 4	気ほう荒の	実験データ(水入口温度	ξ tıın=2(0~29°C)							
Run No.	u _{go} m/s	oIn s∕m	t _{lin} °C	t _{lout}	q kcal/m²h x104	(-dP/dL) kg/m²/m	&out	tw ℃	°c °C	h _T P kcal m ² h ⁰ c	Re	h ₁ kcal m ² h ⁰ c	Relo	$\frac{h_{10}}{m^2h^{0c}}$	τ ^w kg/m²	flow regime
P 4 -113-138	0.1252 0.1256	0.3839 0.3839	25.05 25.05	25.05 41.17	9.70	836.6 822.9	0.220	53.03	34.95	5368	9310 168×0	2840	7265 10460		0.239 0.109	BCBC
P 4 -130-140	0.3091 0.3140	0.4049 0.4049	24.20 25.20	24.20 39.20	9.52	672.0 671.7	0.421	47.75		6903	13120 17740	2998	7595 10640		0.393 0.303	Bc Bc
07-1-65-1-40 Res.	0.6416 0.6525	0.4047 0.4018	25.18 25.18	25.18 40.64	 9.74	558.4 561.6	0.590 0.564		 30.45		18740 22900	3730	7585 9986	1920	0.627 0.531	B c S
85-113-148 Rep. of	0.1338 0.1359	0.4774 0.4756	26.78 26.85	33.27 40.75	5.07 10.60	851.8 844.3	0.210	<u>39.93</u> 53.47	31.01	5679 6038	14090 16680	2570 2795	11130 13180	2130 2315	0.261 0.229	Вт Вс
agn P 4 -133-148	0.3392 0.3321	0.4774 0.4774	26.70 26.70	32.90 39.80	4.72 9.88	691.0 681.0	0.390	37.48 48.74	30.73 35.26	6994 7326	17920 20670	3140 3370	10930 12610	2110 2270	0.342 0.300	BC BC
т о Р 4 -290-172 ::	0.0894	0.7208 0.7257	25.43 25.43	25.43 33.97	9.172	879.2 9 6 8.1	0.086 0.081	41.35	30.85	5253	15060 18850	3180	13760 17320		0.147 0.207	BL BC
24. No.24	0.1082	0.6910 0.7208	24.40 24.40	24.40 33.18		956.5 939.5	0.115 0.104	47.49	30.15	5725	14550 20020	3336	12880 17940	3056	0.302 0.184	B T B C
P 4 -131-172 Warch,	0.3215 0.3032	0.7356 0.7189	25.11 25.11	25.11 34.05		846.1 831.4	0.285 0,264	45.11			19450 23790	3855	1 3910 17510	3020	0.554 0.403	Βc Bc
1978 P 4 -160-172	0.6031	0.7253 0.7324	25.18 25.18	25.18 34.16		768.6 744.1	0.442 0.436	41.83	31.05	9583	24680 31090	4815	13770 17530	3045	0.890	B c B c
P 4 -113-010	0.1295	1.025 1.085	24.30 24.30	27.95 30.55	6.00 10.85	1017.0 978.0	0.110 0.094	36.05 44.68	26.67 28.37	6393 6654	25110 28710	4135 4520	22350 26010	3768 4175	0.537 0.304	\mathbf{B}_{T}
P 4 - <mark>1</mark> 32-01() 0.3202 0.3194	1.029	24.35 24.40	27.90 30.75	6.00 10.74	960.5 950.7	0.230 0.237	3 4. 58 42.15	26.67 28.52	7877 7877	28410 32570	4626 5030	21870 24850	3752 4050	0.805 0.793	Вт Вс
P 4 -164-01() 0.6372 0.6394	1.085 1.092	24.55 24.60	27.30 30.90	4.78	900.6 886.5	0.360 0.363	31.89 40.77	26.32 28.70	8583 9109	35070 39580	5520 5910	22440 25200	3860 4120	1.101	\mathbf{B}_{T}

気ほう流の実験データ(水入口温度 trin=20~29°C)

28

中里見正夫・田原 和雄・浜新 正博

					表 4 (続き	その1)										
Run No.	u _{go} m/s	u ₁₀ m/s	tıın °C	t _{lout} °C	q kcal/m ² h x10 ⁴	(-dP/dL) kg/m²/m	∧ Cout	t °C	°C °C	hrP kcal m ² h ⁰ c	Re	h₁ kcal m²h⁰c	Relo	h₁₀ kcal n²h⁰c	τ _w kg/m ²	flow regime
P 4 - <u>7</u> 84-013	0.0840 0.0842	1.250	24.05 24.05	24.05 28.87		1098 0 1087.0	0.062 0.060	41.10	 26.90		25020 30340		23470 28520		0.676 0.621	B L B r
P 4 -111-013	0.1125 0.1181	1.248 1.243	26.15 26.15	26.15 31.02	9.48	1091.0 1078.0	0.082 0.079	 37.40	 28.00	 8323	26260 31330	 4940	24100 28860		0.731 0.663	Br Br
P 4 -128-013	0.2809 0.2808	1.304 1.297	22.70 22.70	22.70 27.45		1073.0 1045.0	0.165 0.150	37.63	 26.25	 8512	28080 33490		23440 28470		1.006 0.824	B L B T
P 4 - <u>1</u> 50-013	0.4880 0.4900	1.223 1.315	23.01 23.01	23.01 27.70		925.8 1011.0	0.280 0.245	37.20		 8714	30700 39250	 5546	22100 29630		0.870 1.082	Вт Вс
P 4 -157-018	0.5715	1.839	23.85	25.25	4.73	1159.0	0.233	29.74	24.77	9513	47730	7112	36610	5752	1.656	Βc
P 70-113-148	0.1389 0.1347	0.4793 0.4793	20.60 29.55	20.60 37.90	 5.51	853.8 844.3	0.195 0.205	 44.49	 34.47	 5498	10220 15320	 2680	8224 12180	 2230	0.206 0.208	Вт Вт
P 70-135-148	0.1367	0.4867	29.55	44.20	11.05	837.6	0.192	58.40	39.05	5710	18020	2908	14560	2452	0.125	Bc
	0.3515	0.4867	29.40	35.20	5.71	687.3	0.360 0.395	42.49		6127	12970 19650		8300 11890		0.315 0.348	В ^с в
P 70-113-010	0.3483 0.1309	0.4458 1.055	29.70 20.80	47.00 20.80	11.86	673.6 1033.0	0.410 0.095	56.92	40.95	7423	22800 20100	3490	13450 18190	2289	0.353	Bc BL
	0.1272 0.1281	1.090 1.089	25.70 25.70	29.05 32.65	5.54 11.73	1032.0 1022.0	0.101 0.095	36.61 47.80	27.88 30.20	6342 6665	26740 30120	4374 4648	24050 27270	402 0 4293	0.562 0.494	Br Br
P 70-132-010	0.3200	1.092	25.73 25.73	29.05	5.55	967.0 0.730	0.220	35.26	27.89	7535	30610	4872	23870	3993	0.790	B T
P 70-165-010	0.6388 0.6388 0.6497	1.091 1.089	25.82 25.80	32.02 29.05 32.60	5.43 5.43 11.46	90.90 901.0 887.0	0.360 0.340 0.340	42.12 42.12	30.36 27.94 30.23	8577 8577 9635	34400 36930 39210	5690 5812	26660 23640 25880	4228 3983 4168	0.756 1.103 0.959	В В В В С В С В С В С В С В С В С В С В
P 70-159-018	0.5856 0.5879	1.815 1.832	25.75 25.80	27.80 30.05	5.40 12.11	837.2 842.0	0.230 0.230	32.34 39.92	27.08 28.57	10260 10670	49550 54480	7232 7643	38150 41950	5867 6200	0.284 0.304	Βc
Ca -111-195	0.1095 0.1167	0.9567 0.9270	24.35 24.35	24.35 30.70	 9.23	1012.0 967.0	0.103 0.099	44.38		 5815	19870 24630	4000	17830 22190	3679	0.486 0.406	B c B c

気ほう流の強制対流伝熱に関する研究

29

宇部工業高等專門学校研究報告 第24号 昭和53年3月

中里見正夫•田原 和雄•浜新 正博

図2. 続き(ポーラス管P70, 非加熱)

300

図2. 続き(ポーラス管P4, 非加熱)

する流量組合せについて,世古口,福井らの気ほう群の 寸法分布決定法⁽⁴⁾ と写真観察から得られた気ほうの寸法 を示したものである.

毛細管 Caによる気ほう発生法の場合には比較的大き な寸法の気ほう群(気ほう直径:6~10mm)がコア部 を流れている。これに対してポーラス管による気ほう発 生法の場合には比較的小さな寸法の気ほう(気ほう直径 :1.5~3 mm)が壁面の近傍を流動している。このよ うに気ほう流という同一流動様式に属する流れにおいて も大幅に異なる断面内相分布の実現しうることがわか ってきたが,これは運動量ならびに伝熱の機構の記述に も反映されるべきものと考えられる。

4・1-2 加熱時の相分布

気ほう流の相分布は上述のように気ほうの発生方法の 相違によって異なった形をとることが示された。その形 成された相分布は加熱によって分布形が変化する場合と 変化しない場合とが認められた。

図3はポーラス管によって気ほうを発生させた場合の 底層気ほう流が熱流束 q によって相分布形を変えてい く例を示したものである。熱流束の値が比較的小さい範 囲 q $\leq 2 \times 10^4$ kcal/m²·h では非加熱時の相分布形とほ

表 5. 気ほう群の寸法分布 (u_{lo}=1.0m/s, u_{go}=0.32m/s)

у	v/R	P4 • 130-0	011 out	P70 • 132-0	010 out	Ca • 132-	-010 out
mm	J/K	rom	σ	rom	σ	r om	σ
8.45	1.0	1.60	0.78	1.80	0.78	3.0~5.0	
4.98	0.59	1.31	0.84	1.31	0.92		—
2.48	0.29	1.01	0.69	0.94	0.74		

rom は気ほう半径の中央値 mm,

図3. ボイド率と気ほうの通過ひん度分布に及 ぼす熱流束の影響

とんど変わらない.しかし, 熱流束の値 が 5 ×10⁴kcal/ m²•h ないしそれ以上になると, 相分布形は影響され始 め, q=10⁵kcal/m²•h になると底層 気ほう流 であった 流れがコア気ほう流へ移行している.このときの熱流束 は気水の各流量によって影響されるがとりあえずこれを 遷移熱流束と称しておく.

毛細管を用いて実現したコア気ほう流は加熱の有無に よって加熱管出口断面の相分布形はまったく変化しなかった.

沸騰流の相分布形^{(3)、(7)}と本実験結果を比較すれば,サ ブクール沸騰の場合が底層気ほう流となっていてポーラ ス管によって気ほうを発生させた場合に類似している. σ は気ほう半径の標準偏差(4)

バルク温度が上昇して飽和沸騰流になると平均ボイド率の値が小さくても($\hat{\alpha}$ =0.05~0.16),相分布形は凸形の分布となってコア気ほう流を形成し、本実験の毛細管の場合の流れと類似している.

4・2 平均ボイド率

一断面内の4方向から測定したボイド率 $\alpha(\mathbf{r})$ を用い、次式で表わされる断面平 均ボイド率 $\hat{\alpha}$ を図式積分よって算出した.

$$\hat{\alpha} = (2/R^2) \cdot \int_{0}^{R} r \cdot \alpha(r) \cdot dr \qquad (1)$$

ここに \mathbf{R} は管の半径, \mathbf{r} は管中心から半径方向への距離 である

図4は式(1)を用いて求めた平均ボイド率と次式で定義 される気体体積流量比βとの関係を示したものである.

$$\beta \equiv u_{go} / (u_{go} + u_{lo}) \tag{2}$$

図4. 気ほう流の断面平均ボイド率 α と気体 体積流量比 β との関係

ここに, ugo および ujo はそそぞれ 気体および 液体の みかけの速度である.

気水混合方法として,ポーラス管を用いて実現された 底層気ほう流の âの値は毛細管によって実 現した コア 気ほう流の値よりもいく分大きい.

前述のようにポーラス管による空気吹き込みではボイ ド率分布が壁面近傍にピークをもつ流れとなる. 壁面近 傍の気ほう速度は管中心部よりも低い値をとるために, 断面平均で考えた気液間の相対速度は,気ほうの大部分 が壁面近傍を通過する場合には減少傾向を示す. 本実験 の場合は, 図4からわかるように $\hat{a} \cong \beta$ とみなしうる から,相対速度はほぼ零ということになる. これに対し て毛細管による空気吹き込みでは管中心部にピークをも つ流れとなり,相対速度は大きくなる傾向を示すことが 考えられる. したがって \hat{a} は β よりも小さくなり, 図 4の示すところでは, $\hat{a} \cong 0.85\beta$ となっている.

4・3 熱伝達係数

水単相流の熱伝達係数を求め次式で示される Colburn

よび h! の値も記入してある.

表6は気ほうの発生条件いいかえれば相分布特性の相 違が二相流の熱伝達係数 hrp に与える影響を調べた一 例であり、いずれもほぼ同一の流量条件下で得られたも のを表2~表4から抽出したものである. hrp にみられ る差異から判断して、コア気ほう流と底層気ほう流とで 熱伝達過程が異なっていることがうかがえる.

相分布形と hrp の差異とから次のことが 指摘されよう.

(1)勝原ら⁽⁰⁾ が指摘しているように、気相の混入によっ て液体速度が増加することによる効果 ($h_1 - h_{10}$) のほ かに、液相が気相によって付加的に乱されることによる 効果 ($h_{TP} - h_1$)が大きい. (2)同一流量条件における フ気ほう流と底層気ほう流の結果を比較すると、相分布 特性が二相流の熱伝達係数 h_{TP} に与える影響は顕著で、 底層気ほう流の h_{TP} の値がコア気ほう流の h_{TP} よりか なり大である. (3)気ほうの発生方法として平均気孔寸法 の異なる2種類のポーラス管を用いた場 合の h_{TP} の値

気力	x混合法	Run No.	u _{go} m/s	u _{lo} m/s	q kcal/m²•h	t₁in °C	h _i kcal/m ² •h• °C	h _{TP} kcal/m ² •h• °C	$\frac{\mathbf{h}_{\mathrm{TP}}}{\mathbf{h}_1}$	相分布形
毛刹	田管 Ca	133-150	0.343	0.509	9.52×10 ⁴	8.7	2749	4753	1.73	Bc
ポー	Ρı	123-148	0.333	0.484	10.21	7.9	2813	5755	1.95	\mathbf{B}_{L}
ラ		155 140	0.332	0.477	9.88	26.7	3440	7326	2.17	
ス 管	P70	135-148	0.348	0.446	11.86	29.7	3490	7423	2.13	BL
毛紙	暗管 Ca	ī 32—010	0.324	1.081	9.95	8.7	4109	5754	1.40	Bc
ポ	P A	130-198	0.329	0.931	10.20	7.5	3881	5974	1.54	BL
ラ	. 4	132-010	0.319	1.066	10.74	24.4	5030	7877	1.57	_
ス管	P70	132-010	0 322	1.090	11.73	25.8	5185	7985	1.54	BL

表6相分布形と熱伝達係数の関係

Bc:コア気ほう流, BL:底層気ほう流

の式(®)から得られる値と比較しつつ実験を進めた.

 $Nu = 0.023 \cdot Re^{0.8} \cdot Pr^{1/3}$ (3)

なお,上式におけける液体の物性値は伝熱面温度 tw と 流体の混合平均温度tb との平均値に対する値を用いる.

加熱管には管軸に沿って14対の熱電対が取り付けてあ るが,温度的に十分発達した位置(加熱開始点から535 ~735mmの位置)にある No.8~No.12の5箇の測定 値を平均した値によって熱伝達係数の議論を行う.

表 2 ~表 4 中には測定された二相流の熱伝達係数 hrp のほかに、みかけの水速度 uio および水単相速度 $\hat{u}_1 =$ $u_{1^/}(1-\hat{\alpha})$ を用いて式(3)で算出した熱伝達係数 hioお にはほとんど差異がない.両者がいずれも,相分布形と 気ほう群の寸法構成とにおいて類似しているためである と判断される.

4・4 流体の温度分布

供試管の加熱部出口から約50mm上流側の断面にそう 入された熱電対によって流体の断面内温度分布を測定した。

図5と図6は得られた流体の温度分布を示したもので ある.ポーラス管を用いて実現された底層気ほう流にお いては、気ほう底層内の気ほうによって壁面近傍の温度 分布が影響を受け、温度分布曲線に変曲点が認められ

Res. Rep. of Ube Tech. Coll., No.24. March, 1978

る. このことは,サブクール沸騰において著者らの指摘 した結果⁽¹⁾ と類似した現象である.

これに対して毛細管を用いて実現したコア気ほう流で は温度分布曲線に変曲点を有するものはみられない. な お,図6中には水単相流における温度分布の測定値と計 算値^ω とが示してある.

4・4 壁面のせん断応力

運動量と熱の移動現象を比較してみるために壁面のせん断応力を求めた。測定した圧力こう配(-dP/dL)と 平均ボイド率 âから次式を用いて壁面のせん断応力 rw が算定できる.

$$\tau_{\rm w} = \left\{ \left(-dP/dL \right) - \gamma_{\ell} \left(1 - \hat{\alpha} \right) - \gamma_{g} \cdot \hat{\alpha} \right\} \cdot \left(\frac{R}{2} \right) \quad (4)$$

ここに、 r_l および r_g は液体と気体の比重量で、Rは管

の半径である.

23

22

21

20

19

18

17

11

10

9

8.5

0

ပ

ပ

図7は式(4)を用いて計算した壁面のせん断応力 τ_w $Re(=\{u_{lo}/(1-\hat{\alpha})\}\cdot D/\nu_l)$ の関係を示したものであ る. 図中の三角印は 毛細管 Ca を,丸印はポーラス管 をそれぞれ用いた場合の値である。断面の相分布特性の 相違が τ_w にも有意な差となって現われているようであ る.

また、 τ_w の値は同一の流量条件においても加熱の有 無と熱流束の値の大小によって有意な差異が認められ る.表2~表4を参照してわかるように、同一の流れを 加熱すると τ_w は幾分小さくなり、q の値が増加する につれて τ_w の値は減少している.このことは、管内に そう入したピトー管で測定した液体の速度分布の差異か らも符合するようである.ピトー管は内径0.8、外径1.2

P4.130-154

図5 続き(P4,底層気ほう流)

0.4

У⁄R

0.6

0.8

0.2

宇部工業高等専門学校研究報告 第24号 昭 和 53 年 3 月

116

15

7

図6 流体の温度分布とボイド率分布

mmのもので壁面近傍の情報が得られなかったが,管中 心部の速度分布は測定できる。その結果によると,管中 心郎の速度分布のこう配は熱流束を加えることによって わずかながら平坦になっている。

加熱面に接する液体の層内には急激な温度こう配が形 成され(前出)ていて物性値変化が大きく,さらにこの 層内に急激な速度こう配が成立していることが予想され る.

5. む す び

垂直に上昇する気ほう流のボイド率分布は気ほうの発 生方法を変えるだけで著しく異なったものになることが

図7 壁面せん断応力 Tw 対 Re の関係

示された.このボイド率分布の変化が熱伝達係数にどの 程度の差異となって現われるかを実験的に検討した.そ の結果を要約すると次のようである.

(1)気ほう底層を形成する流れ(底層気ほう流)と、大 部分の気ほうがコア部を流動する流れ(コア気ほう流) との極端に相分布形の異なる二つの流れを実現し、二相 流の熱伝達係数を測定した。その結果、断面内の相分布 形の差異は熱伝達係数に影響を与えることがわかった。 気水の各流量が同一の流れであっても、底層気ほう流の 熱伝達係数はコア気ほう流のそれに比して15~20%程度 大きな値となる。

(2)流体の温度分布を測定した結果,底層気ほう流では 気ほう底層内の気ほうによって温度境界層が影響を受 け,伝熱面近くの温度分布曲線に変曲点をもち,サブク ール沸騰の温度分布曲線と類似の性質が認められた.こ の現象はコア気ほう流では認められなかった.

(3)底層気ほう流の相分布形は熱流束によって影響を受け、条件によってはコア気ほう流へと移行する.影響を及ぼす熱流束の値はおよそ 10⁵kcal/m²·h であり、 2×10^4 kcal/m²·h ないしそれ以下の値ではほとんど影響を与えない.コア気ほう流の相分布形は熱流束の有無

Res. Rep. of Ube Tech. Coll., No.24. March, 1978

によって全く影響を受けなかった.

終わりに、本研究を始めるに当り種々の御教示を戴い た世古口言彦教授(九大工),終始討論を戴いた佐藤泰 生助教授(熊大工),田中収(九大工)の各氏に感謝す る.また、本実験の遂行に協力された当時宇部高専学生 金子高治、黒岩邦彦の両氏,装置の製作に御助力を戴い た実習工場の各氏に感謝する.実験データの計算には宇 部高専電算機室を利用したのでここに謝意を表する.

文 献

- (1) 世古口ほか,機論,40-336(昭49-8),2295.
- (2) 世古口ほか,第12回伝熱シンポジウム講論,(昭50-5),385.
- (3) 世古口ほか,機論, 41-346(昭50-6), 1889.

- (4) 世古口ほか,機械の研究,29-2 (昭52),17.
- (5) 西川ほか, 第805回熱工学講論, (昭45-11), 37.
- (6) 世古口ほか,第9回伝熱シンポジウム講論,(昭47-5),17.
- (7) 世古口ほか,第10回伝熱シンポジウム講論,(昭48 -5),1.
- (8) Colburn, A. P., Trans. AIChE., 29 (1933), 174.
- (9) 勝原,風間,機論,24-144(昭33-4),228.
- (10) Sekoguchi, K., et. al., Proc. of the 5th Int. Heat Transfer Conference, 4 (1974), 180.
- (11) 甲藤好郎, 伝熱概論, 養賢堂(1969), 115.