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Abstract

Our purpose of this note is, using a concept of c-essential extensions, to study some basic properties
concerning essential extensions of modules in a torsion theory.

Introduction

For a fixed left exact radical ¢ on R-mod, a module M is called a c-essential extension of a submodule
N, if Mis essential over N and M/N € T. In this paper 'we study some basic properties concerning
o-essential extensions of modules. We treat ¢-uniform modules, ¢-atomic modules and o-critical left
ideals.

Essential extensions of modules

Throughout this paper, R will mean a ring with identity 1 and modules will mean unital left
R-modules.

We denote by R-mod the category of all modules.

For a left exact radical ¢ on R-mod, we associate a hereditary torsion theory (T, F) for R-mod, and
an idempotent filter /.

Basic properties of torsion theories used in this paper may be found in (1 J.

A module M is said to be a ¢-essential extension of a submodule N if,

(1) M is an essential extension of N, and

(2) Nis c-openin M, (i.e.,, M/NZT) .

A non-zero module M is said to be g-uniform if M is a ¢-essential extension of every non-zero sub-
module,

Lemma 1. Let L, M and N be modules with L C M C N. If M is a c-essential extension of L and N
is a c-essential extension of M, then N is a c-essential extension of L, and conversely,

Proof. Assume that M and N are o-essential extensions of L and M respectively. Then it is clear
that N is an essential extension of L. From the exact sequence (0 —> M/L —> N/L —> N/M - -—>
0, it follows that N/L € T, i.e., L is c-open in N,

Conversely, assume that N is a o-essential extension of L. It is clear that M is an essential extension
of L and N is an essential extension of M. Since the sequences (0 —> M/L —> N/L and N/L —>
N/M —> (0 are exact, we have M/L € T and N/M € T.

From the above lemma, we see that every non-zero submodule and every c-essential extension of a
c-uniform module are again ¢-uniform.

A module is said to be c-complete, if it has no proper s-essential extensions.

Proposition 2. For every module M, there is a c-essential extension jf of M which is c-complete,

This extension is unique up to isomorphism over M. Nf is called the o-completion of M.
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Proof. We can construct an extension jf of M by M/M = o (E(M)/M), where E(M) denotes
the injective hull of M. Since M C pf C E(M) and E(M) is an essential extension of M, M is an
essential extension of M, and moreover, Af/M is in T. This means that a7 is a J-essential extension
of M.

Next, we shall show that Af is o-complete. Let H be a o-essential extension of p7. We may assume
that A is contained in E(M). Since H/M & T, we obtain that H/M C ¢ (E(M)/M) = p/M, so that
M=H.

It remains to show that j7 is unique. To this end, assume that U is any o¢-essential extension of M
and is. o-complete. Since M C UC E(M) and U/M & T, we have UM C M/M, i.e.,, UC M.
Using Lemma 1, pfis a o-essential extension of U. Thus U= j7 because of the s-completeness of U.

A module E is called o-injective if for any I € £ and any R-homomorphism f of I to M, there is
an R-homomorphism f of R to M extending f.

Proposition 3. A module M is c-complete if end only if M is c-injective.

Proof. Let M be c-injective and let M’ be a od-essential extension of M. The sequence 0—> M —>
M—>M'/M—>0 is exact and M'/M & T. Hence there exists some module X such that }M'= MDX.
But M’ js an essential extension of M and so we obtain M’ = M

Conversely, let I © £ and let f be an R-homomorphism of I to M. By the injectivity of E(M),
there exists an R-homomorphism f of R to E(M) extending f. We put f(1)=x and show that x &€ M,
Let ¢ be the mapping from R to (Rx-+M)/M defined by ¢(r) = rx +M for r & R. Then ker ¢ =
(M:x) and R/ker ¢ = (Rx+M)/M. For any a € I, ((M:x):a) = (Mtax)=R & £, since ax
= f(a)= f(a) ©M. By the property of £ in (1, P, 7] we have (M:x) & .£. Thus (Rx+20)/M
& T, and so Rx+M is a c-essential extension of M. By assumption M=Rx-+M. Therefore x & M.

Proposition 4. If M is c-injective and E(M) is c-uniform, then M is injective.

Proof. Since M is d-injective, E(M)/M C F (see Lambek (1) ). On the othere hand, since E(M)
is o-uniform, we have E(M)/M & T, Thus E(M)=M as desired.

Proposition 5. Let M be a uniform module. Then M is o-uniform if and only if, for any non-zero
element m of M, Rm is c-uniform,

Proof. The “only if” part is obvious. To prove the “if” part, assume that M is not oc-uniform.
Then there is some non-zero submodule N of M such that M is not a o-essential extension of N. Since
M is uniform, N is not c-open in M. There exists a proper submodule L of M such that ¢(M/N)=
L/N, and 0 5= M/N=(M/N)/6(M/N) & F. Take an elementm in M\L. Since Rm/(Rm (1 L) is isomor-
phic to a submodule of M/L, Rm/(Rm (1 L) €F. On the other hand, M is uniform and L =% 0, so
we have Rm M L*0.

Hence Bm/(Rm N L) &T by assumption. This implies that Rm/(Rm 1 L) € TN F =0 and Rm=
Rm N L. Thus m & L, a contradiction.

A left ideal 7 of R is called c-critical, if R/I is c-uniform. Thus I is o-critical if and only if R/[is an
essential extension of J/I and R/JET, for all left ideals J properly containing 1.

A module M is called o-atomic if

(1) M is cg-uniform and

(2) M is c-complete.

By the above definition, we have the following proposition.

Proposition §. If M is c-uniform, then M\ is c-atomic. In particular, if lis a c-critical left ideal of R,
then (1(75 is o-atomic.

Moreover, we can prove the converse of this proposition.
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Proposition 7. Let M be a c-atomic module. Then there exists a ¢-critical left ideal I of R such that
M is isomorphic to (R]I).

Proof. For any m (=0)in M, let I= (0 : m). Then R/I is isomorphic to Rm. Since M is ¢-uniform,
Rm is c-uniform, Thus, I is ¢-critical. Moreover M is a o-essential extension of Rm. Hence we have
M = (R/I).

Proposition 8. The following statements are equivalent for a non-zero module M :

(@) Mis c-uniform,

(b) M is c-uniform.

(¢) M is c-atomic.

Proof. Obvious.

Proposition 9. The following statements are equivalent for two c-critical left ideals I and J:

@) Iand J are related (i.e., if (I:a)=(J:b) for some a & R\I and b & R\J).

(b) A non-zero submodule of R/I is isomorphic to a submodule of R/J.

() (R/I) = (R/]).

Proof. The proof is similar to that of Storrer [ 2, Proposition 2. 33, so we omit the proof.
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