乾燥転がり接触における表面損傷

第2報 表層面の破壊機構

小 川 壽

Surface Defect on the Rolling Contact of Dryness (2nd Reprt)

Destructive Mechanism of the Surface

Hisashi Ogawa

Abstract

There are two ways of investigating the surface defect caused by contact of two cylinders;

One is a metallographic way, and the other a dynamic one. I investigated the surface destructive mechanism in case of the latter by comparing the destruction by fatigue with the contact stress theory.

1. まえがき

2円柱が無潤滑ですべりを伴って回転すると,表面に scaffingと呼ばれる損傷を起こす.接触している円柱上 には垂直力と接線力とが作用しているが,実際には接触 面が非常に小さいために,力の分布を測定することは難 かしいこととなっている.理論的には接触表面の圧力は 惰円分布をなしており¹⁾,それを外力として表層面およ び内部における応力を知ることができる.

損傷が起きる状態を調べる手段として、金属学的方法 と力学的方法とがあるが、後者については測定上の問題 があり理論の裏付けとしては明確なものはなく、前者の 状態より推定している^{2)~8)}.著者は表面損傷直後の最大 応力が疲労の場合に比較して、どのような関係にあるか を調べてみた.

2. 実 験 方 法

使用した試験片は,外径48¢を基準とし,外周は研削 仕上げ(3S)とした.試験片寸法は図1に示す通りで ある.使用材料は機械構造用炭素鋼(S25C,S45C) で,その化学成分,機械的性質は表1および表2に示す 通りである.熱処理は素材のまま 900℃で60分間保持し た後,炉冷して焼なましを行なった.

*実験条件

実験に使用した試験機はアムスラー型金属摩耗試験機

	C	Mn	Si	Р	S
S25C	0.20	0.45	0.23	0.013	0.007
S 45C	0.42	0.60	0.27	0.018	0.002

である.実験範囲は次の通りである.

下部試験片直径 48¢

上部試験片直径 48¢, 46.5¢, 44¢

*宇部工業高等專門学校機械工学科教室

Table. 2 Mechanical properties of material

	Yield strength (kg/mm ²)	Tensile strength (kg/mm ²)	Elongation (%)	Reduction of area (%)
S25C	31.8	44.4	31.9	59.8
S45C	37.7	66.8	15.9	42.4

相対すべり率	10%, 17.5%, 24%, 25%
接触重量	15kg/cm~60kg/cm

3. 接触表面の応力

2円柱が接触する際に、単に接触している場合はnormal な面圧を考えればよいが、回転を伴なっている場合 にはtangencial な力を考慮しなければならない. これに ついては、Smith によって理論的に解析がなされてい る. 著者はその結果を基にして、表面上の応力が破壊の 条件に対しどのようになるか計算した.

接解面上での面圧は

 $p(x) = p_0 \sqrt{1 - (x/a)^2}$ ----(1)

$$q(x) = \mu p(x) ---(2)$$

$$q(x) = \begin{cases} q_0 \sqrt{1 - (x/a)^2} & b \ge x \ge -a \\ q_0 \sqrt{1 - (x/a)^2} & -q'_0 \sqrt{1 - (x/a)^2} \\ -q'_0 \sqrt{1 - (x/a)^2} & a \ge x \ge b ---(3) \end{cases}$$

表面上の圧力分布は図2に示すようになる.

 $q_0 = 2 p/\pi a$ p: Total normal force. p_0 : Maxmam normal force

これを解くと

靀

$$q'_{0} = \left(\frac{\pi a}{2}q_{0} - T\right) / \left\{\frac{a - b}{a + b}\sqrt{ab} + \operatorname{Sin}^{-1}\left(\frac{a - b}{a + b}\right)\right\}$$

a点で接した,上下試験片は相対変位量 Sc が b点の臨 界変位量 Sc maxまで直線的な増加を示し, Sc max に 達すると凝着部分がはれてすべり領域に入いる. 接線力 Tが, T $< \mu p$ の場合にはadheve regionが存在している ことになる.

表面に働く力としては, normal方向とtangencial方向 とがあるが, normal な力によって生ずる応力は面圧の 作用している部分にだけ生じ, adhesive region が存在 してもその影響を受けることはない.

$$x_{x'} = x - \frac{a+b}{2} , \quad c = \frac{a-b}{2}$$

とすると, せん断力で生ずる表面上の応力は次のように 表わせる.

$$\sigma_{xt} = \begin{pmatrix} -2 q_0 (x/a\sqrt{(x/a)^2 - 1}) + 2 q_0 q'_0 (x'/c) \\ -\sqrt{(x'/c)^2 - 1} \end{pmatrix} \qquad x > a \\ -2 q_0 x/a + 2 q_0 q'_0 x'/c \qquad a \ge x \ge b \\ -2 q_0 x/a + 2 q_0 q'_0 (x'/c + \sqrt{(x'/c)^2 - 1}) \\ b > x \ge -a \\ -2 q_0 (x/a + \sqrt{(x/a)^2 - 1}) + 2 q_0 q'_0 (x'/c) \\ +\sqrt{(x'/c)^2 - 1} \end{pmatrix} \qquad (6) \\ x < -a \\ \tau_{xzt} = \begin{pmatrix} -q_0 \sqrt{1 - (x/a)^2} - q_0 q'_0 \sqrt{1 - (x'/c)^2} \\ a \ge x \ge b \\ -q_0 \sqrt{1 - (x/a)^2} & b > x \ge -a \\ 0 & x \ge a \\ 0 & x \ge a \\ , x \le -a \end{pmatrix} \qquad (7) \\ \sigma_{zt} = 0 \qquad (8) \\ \sigma_{yt} = \nu (\sigma_{xt} + \sigma_{zt}) = \nu \sigma_{zt} \qquad (9)$$

次に実際に表面に生ずる応力は、tangencial な力と normal な力との合成として表わすことができるから合 成の応力は

Res. Rep. of Ube Tech. Coll., No.18 March, 1974

$$\sigma_{x} = \begin{pmatrix} -2 q_{0} (x/a - \sqrt{(x/a)^{2} - 1}) \\ +2 q_{0}q'_{0} (x' - \sqrt{(x'/c)^{2} - 1}) & x > a \\ -P_{0}\sqrt{1 - (x/a)^{2}} - 2 q_{0}x/a + 2 q_{0}q'_{0}x'/c \\ & a \ge x \ge b \\ -P_{0}\sqrt{1 - (x/a)^{2}} - 2 q_{0}x/c \\ +2 q_{0}q'_{0} (x'/c + \sqrt{(x'/c)^{2} - 1}) b > x \ge a \\ -2 q_{0} (x/a + \sqrt{(x/a)^{2} - 1}) \\ +2 q_{0}q'_{0} (x'/b + \sqrt{(x'/c)^{2} - 1}) x < -a \\ & -q_{0}(0) \\ \tau_{xz} = \tau_{xzt} & (11) \\ \sigma_{z} = \begin{cases} -P_{0}\sqrt{1 - (x/a)^{2}} & |x| \ge a \\ 0 & x > a \\ 0 & x \ge a \ge b \\ -2 P_{0}\sqrt{1 - (x/a)^{2}} - 2 q_{0}x/a + 2 qq'_{0}x'/c \\ & a \ge x \ge b \\ -2 P_{0}\sqrt{1 - (x/a)^{2}} - 2 q_{0}x/a \\ +2 q_{0}q'_{0} (x'/c + \sqrt{(x'/c) - 1}) b > x \ge -a \\ \sigma_{z} & x > a \\ & x < -a - (13) \end{cases}$$

次にadhesive regionの存在についてはすべり率10%, 接触荷重 30kg/cm, R=4cm, E=2.1×10⁶kg/cm² と して相対変位量を計算すると

Sc=2as=8.16×10⁻⁴
となり文献3の結果から摩擦係数
$$\phi$$
は
 $\phi=T/\mu p=9.2$

となりc/a=0.25となってしまう.

すなわち、相対すべり率が10%においては adhesive regionは存在しているが、20%になると $\phi = 1$ となり adhesive region は存在しなくなる.本実験の場合 adhesive regionは考慮せずに計算を行なった.

ここで破壊が生ずる応力として考えてみる場合,最大 主応力,最大せん断応力を考えてみることにした.

最大主応力

における破壊応力と同じ値に推定して行なった⁹⁾.

4. 実験結果および考察

*Po-N線図

図3および図4にS25C,およびS45Cの表面損傷を生 ずるまでの回転数と接触圧との関係について図示した. 両方を比べてみると、S45Cの方が表面破壊にいたるま での rev が若干伸びている.S.R 17.5%と25%付近は 損傷 rev の差が余りなく、この付近のS.R比においては 同一負荷に対し摩擦係数の値に違いがなく、すべりに対 し接線力が同じ位の値を示すものと考えられる.

宇部工業高等專門学校研究報告 第18号 昭 和 49 年 3 月

表面破壊直後の摩擦係数を表3に示す.この値を接線 力の計算に用いた.摩擦係数はすべり率,接触圧によっ

て異なるが, S.R 17.5%, 25%においては接触圧による違いは余りなく, S.R 10%の場合,接触圧の増加に

Fig. 4 The relation of P_0 and N rev at S45C

Table.	3	The torque and and the coefficient
	:	of friction on the each load.

S 25 C

S.R	Load	Torque	f
%	kg/cm	kg-cm	
	15	10	0.278
	20	23	0.479
	25	30	0.500
10	35	30	0.357
10	35	55	0.655
	50	80	0.667
	60	75	0.521
	60	90	0.625
	10	12	0.500
	10.75	13	0.504
	15	15	0.417
17.5	20	18	0.375
	20	20	0.417
	25	28	0.467
	35	35	0.417
	50	60	0.500

24	9.5	8	0.351		
	17.5	15	0.357		
	25	20	0.333		
	25	22	0.367		
	35	33	0.393		
	50	40	0.333		
	50	50	0.417		
S45C					
S.R	Load	Torque	f		
%	kg/cm	kg-cm			
	15	10	0.278		
10	20	20	0.417		
	25	32	0.533		
	35	60	0.714		
	50	70	0.583		
	60	90	0.625		
17.5	15	14	0.389		
	20	20	0.417		
	25	20	0.333		
	35	60	0.714		

5

7

0.583

	20	15	0.313
	25	14	0.233
25	35	35	0.417
	50	50	0.417

伴って上昇している.

*破損時の表面応力

S25C, S45C, の場合の破損直後の最大応力とrev との関係を示したものが図5~8である,全体的にみると 主応力による破壊の場合,疲労の破壊推定域より上側に なっているし,せん断応力の場合は下になっている.両

Fig. 5 The relation of σ_1 and N rev on th contacted surface at S25C

Fig. 7 The relation of τ max and N rev on the contacted surface at S25C

Fig. 8 The relation of τ max and N rev on the contacted surface at S45C

方の中間的なものがちようど推定域に存在するようにな ると考えられる.

各すべりによる破壊応力について考えると、同一負荷 におけるすべりに対し17.5%と25%の場合は、ほぼ近い 応力で破壊していることがわかるが、10%の場合他より 高い応力になっている.

実際には同一上の応力になると考えられるが,他の2 つとは rev が伸びていることと,摩擦係数が高いために 応力が高く出たと考えられる.

5. 結論

乾燥状態における転がり回転面の表面上の応力につい て3種のすべり率の場合の最大応力値の計算を行なった が一応, adhesive region は存在しないと考え,最大応 力は疲労破断推定域に対し,最大主応力の場合上限に, 最大せん断応力の場合は下限に位置した.

参考 文献

1) J. O. Smith & C. K. Liv, J. Appl. Mech.,

20 (1953-3), 157.

- 2) 西岡, 平川:機論34-2.6 (昭43-10), 1635.
- 3) 〃 〃 34-268 (昭43-12), 2068.
- 4)山下,平野:機論37-304 (昭46-12), 2379.
- 5) // // // 2387.
- 6)小川:宇部高専研報14(昭46-12)9.
- 7) 〃 〃 16 (昭47-12), 7.
- 8) 〃 機講論 No.735-1 (昭48-8), 49.
- 9)金属材料疲れ強さの設計資料1,日本機械学会