テレビジョン信号のガウスーマルコフモデルと DPCM 系への応用

一第2報 多段平滑化問題の応用一

藤 本 勉*

Gauss-Markov Models of Random Television Signals and, Its Applications to Differential Pulse Code Modulation Systems

-No.2 Application on of Multi-Stage Smoothing Problems-

Tsutomu FUJIMOTO

Abstract

Continued from the previous report, in this paper the quantizing noise reduction problem is disscussed in the defferential pulse code modulation system.

First, multi-stage-smoothing theory is developed and is applied to the decoder design of the predicted quantizing system for the transmission of television signals.

As the results, multi-stage-smoothing is very effective, specially when the relative power of quantizing noise is 0.1-1.0, and it can be avoided the decoder become more complicated.

1.まえがき

本研究はテレビジョン信号のように冗長度の多い信号 を,その冗長度を除去して帯域圧縮して伝送する方法に 関するものである.

前報¹⁾ においては、テレビ信号のガウスーマルコフ・ モデルを作り、そのモデルに対して、局部復調器に *Kalman* フィルターを採用した予測量子化系を設計し、 さらに受信側においては、復調出力に含まれる量子化雑 音を低減させるために、復調出力をさらに、濾波または 平滑化することを試み、効果のあることを確めた.

本報では、平滑化の効果をさらに高めるために、より 複雑な多段平滑化を行なってみるものである、すなわ ち、前報において用いた平滑器はいわゆる1段平滑とい われるもので、現在までの受信情報を基にして、1サン プル時点前の信号を推定するものであるのに対し、本報 告でいう所の多段平滑器は、数サンプル時点過去の信号 を推定しようとするものであり、それだけに、雑音低減

* 宇部工業高等専門学校電気工学科

効果の著しいことが期待できる.

以下,多段平滑化理論を展開し,前報で求めたモデル について設計例を示し,その効果について論じる.

2 多段平滑過程^{4),5)}

先ず、多段平滑過程について論じる. 前報と同じくテ レビジョン信号をガウスーマルコフ・モデルで表わす. すなわち

$$W(k+1) = \phi W(k) + \eta(k) \quad \dots \quad (2.1)$$

$$E[\eta(k)] = 0$$

$$E[\eta(k)\eta(j)] = Q\delta_{kj}$$

$$E[W(0)] = 0$$

$$E[\{W(0)\}^2] = \phi(0)$$

$$E[W(k)\eta(j)] = 0$$

ただし, k はサンプル時点で, k=0. 1. 2. …, Ø は テレビ信号の自己相関関数から求まる推移係数, η は モデルの入力ガムス雑音である.

劔

 $=E[W(k+1)\tilde{W}(k+2-k+1)]$

であるから(2.8),(2.9) 式より

 $E[W(k+1)\tilde{Z}(k+2 \mid k+1)]$

 $=\frac{P(k+1 | k+1)}{P(k+2 | k+1)+R}$

 $\frac{P(k+1 \mid k+1)\phi}{P(k+2 \mid k+1)}G(k+2)$

上式の誘導において、Kalman フィルターより

 $E[\{\tilde{Z}(k+2 | k+1)\}^2]$

 $\triangleq A(k+1)C(k+2)$

 $= P(k+1 \mid k+1) \phi$

 $= E[\{W(k+1)\{\emptyset \, \widetilde{W}(k+1 \mid k+1) + \eta(k+1)\}]$

 $\dots (2.9)$

 $\dots 2.10)$

予測量子化系における局部復調器の入力は

 $Z(k+1) = W(k+1) + \delta(k+1)$ (2.3)

 $E[\delta(k+1)\delta(j+1)] = R\delta_{kj}$ $\dots (2.4)$

ここで ∂ は量子化雑音であり,入力信号と独立なガウ ス雑音である.

以上のシステムにおいて多段平滑値は次の式で定義さ れる.

ただし

$$\hat{W}(k+1 \mid k+1+N) \triangleq E[W(k+1) \mid \{Z(k+1+N)\}]$$
$$\tilde{Z}(i \mid i-1) \triangleq Z(i) - E[Z(i) \mid \{Z(i-1)\}]$$
$$\dots (2,5)$$

すなわち、Žは局部復調器の入力のうち、次の推定値 を生成するに必要な情報成分で、 測定 残余(measure mentresidual) と呼ぶものである. これを用いて

 $E[W(k+1) | \{Z(k+1+N)\}]$ $=E[W(k+1) | \{Z(k+N)\}, \tilde{Z}(k+1+N | k+N)\}$ $= E [W(k+1) | \{Z(k+N)\} +$ $+E[W(k+1) | \tilde{Z}(k+1+N | k+N)]$ $= E[W(k+1) \mid \{Z(k+1)\}]$ $+\sum_{i=k+Z}^{k+1+N} E[W(k+1) \mid \widetilde{Z}(i \mid i-1)]$ $=\hat{W}(k+1 \mid k+1)$ $+ \sum_{i=k+Z}^{k+1+N} \frac{E[W(k+1)\tilde{Z}(i \mid i-1)]}{E[\{\tilde{Z}(i \mid i-1)\}^{2}]} \tilde{Z}(i \mid i-1)$ $\dots (2.6)$ (2.5), (2.6) 式より $\tilde{Z}(i | i-1) = Z(i) - E[Z(i) | \{Z(i-1)\}]$ $= W(i) + \delta(i) - E[W(i) + \delta(i)] + \{Z(i-1)\}]$ $= W(i) + \delta(i) - \hat{W}(i \mid i-1)$ $= \widetilde{W}(i \mid i-1) + \delta(i)$ $\dots (2.7)$ よって $E[\{\tilde{Z}(i \mid i-1)\}^2] = E[\{\tilde{W}(i \mid i-1) + \delta(i)\}^2]$ $= E\{\widetilde{W}(i \mid i-1)\}^{\mathfrak{I}}$ $+E[\{\delta(i)\}^2]$ $=P(i | i-1) + R \dots (2, 8)$ 前報と同じく、Pは推定誤差分散で $P(k \mid j) = E[\{\widetilde{W}(k \mid j)\}^2]$ また $E \subseteq W(k+1)\widetilde{Z}(k+2 \mid k+1)$

 $G(k+2) = \frac{P(k+2 \mid k+1)}{P(k+2 \mid k+1) + R}$ $\dots (2.11)$ を用いた、欠に(2.9) 式と同様にして $E[W(k+1)\tilde{Z}(k+3 \mid k+2)]$ $= E[W(k+1)\tilde{W}(k+3 \mid k+2)]$ $= E[W(k+1)\widetilde{W}(k+2 \mid k+2)] \emptyset \cdots (2.12)$ ここで, $\widetilde{W}(k+2 \mid k+2) = \widetilde{W}(k+2) - \widetilde{W}(k+2 \mid k+2))$ $= W(k+2) - \left[\mathscr{O} \hat{W}(k+1 \mid k+1) \right]$ $+G(k+2)\{Z(k+2)\}$ $- \phi \hat{W}(k+1 \mid k+1) \}$ $= \{1 - G(k+2)\} W(k+2)$ $-\int 1 - G(k+2) \Im \hat{W}(k+2 \mid k+1)$ $-G(k+2)\delta(k+2)$ $=\{1-G(k+2)\}\widetilde{W}(k+2 \mid k+1)$ $-G(k+2)\delta(k+2)$ \dots (2.13) 故に, (2.13)→ (2.12), (2.12) → (2.10) より $E[W(k+1)\widetilde{Z}(k+3 \mid k+2)]$ $\overline{E[\{\widetilde{Z}(k+3 \mid k+2)\}^2]}$ $E[W(k+1)\{[1-G(k+2)]\widetilde{W}(k+2 \mid k+1)\}$ $-G(k+2)\delta(k+2)$ $\frac{1}{P(k+3 \mid k+2) + R}$ $E \subseteq \widetilde{W}(k+1 \mid k+1) \{1 - G(k+2)\}$ $\{\emptyset \widetilde{W}(k+1 \mid k+1) + \eta(k+1)\}]\emptyset$ $\overline{P(k+3 \mid k+2) + R}$ $P(k+1|k+1)\{1-G(k+2)\}\emptyset^2$ (2.14) $\overline{P(k+3 \mid k+2) + R}$ 上式の誘導において $E[W(k+1)\delta(k+2)] = 0$ $= E[W(k+1)\{\tilde{W}(k+2 \mid k+1) + \delta(k+2)\}]$ $E[\widetilde{W}(k+1 \mid k+1)\eta(k+1)] = 0$

Res. Rep. of Ube Tech. Coll., No.15 July, 1972

を用いた. (2.11) 式を用いて, (2.14) 式は

$$= \frac{P(k+1 \mid k+1) \emptyset \{1 - G(k+2)\} G(k+3)}{P(k+3 \mid k+2)}$$

$$= \frac{P(k+1 \mid k+1) \emptyset}{P(k+2 \mid k+1)} \cdot \frac{P(k+2 \mid k+2) \emptyset}{P(k+3 \mid k+2)} \cdot G(k+3)$$

$$= A(k+1) A(k+2) G(k+3) \qquad \dots (2.15)$$
上式で, Kalman フィルターより

$$\{1 - G(k+2)\} = \frac{P(k+2 \mid k+2)}{P(k+2 \mid k+1)} \qquad \dots (2.16)$$
を用いた. (2.15) 式と同様にして, 一般に

$$\frac{E(W(k+1)\tilde{Z}(i \mid i-1))}{E(\{\tilde{Z}(i \mid i-1)\}^2)}$$

$$= A(k+1) A(k+2) \cdots A(i-1) G(i)$$

$$\triangleq M(k+1 \mid i) \qquad \dots (2.17)$$
さ表わすことができる. 以上の試論 により (2.17)
式を (2.6) 式に代入して, 一般に N 段平滑値は次式
で表わすことができる.

$$\hat{W}(k+1 \mid k+1+N) = \hat{W}(k+1 \mid k+1)$$

$$+ \sum_{i=k+z}^{K+1+N} M(k+1 \mid i) \tilde{Z}(i \mid i-1)$$

$$= \hat{W}(k+1 \mid k+1) + M(k+1 \mid k+2)\tilde{Z}(k+2 \mid k+1) + \sum_{i=k+3}^{k+1+N} M(k+1 \mid i)\tilde{Z}(i \mid i-1) \cdots (2.18) = \hat{W}(k+1 \mid k+2) + \sum_{i=k+3}^{k+1+N} M(k+1 \mid i)\tilde{Z}(i \mid i-1) \cdots (2.19)$$

=.....

$$= \hat{W}(k+1 \mid k+N) + M(k+1 \mid k+1+N)\tilde{Z}(k+1+N \mid k+N)$$
......(2.20)

ただし,

$$M(k++1 \mid k+1+N) = \prod_{j=k+1}^{k+N} A(j)G(k+1+N)$$
$$= \prod_{j=k+1}^{k+N} \frac{P(j \mid j)}{P(j+1 \mid j)}G(k+1+N)$$
.....(2.21)

(2.20) 式においては, $\hat{W}(k+1+k+N)$ が N-1 段平滑値であるので,別に求めなければならず,複雑化 する.そのため,(2.20) 式を次のようにして変形す る.

まず, 前報
$$(4)$$
 式より
 $\hat{W}(k \mid k+1) = \hat{W}(k \mid k) + A(k) [\hat{W}(k+1 \mid k+1)]$
 $-\hat{W}(k+1 \mid k)]$ (2.22)
(2.20) 式より, $k+1 \rightarrow k$, $N=1$ とし, (2.22)

式を用いて $\hat{W}(k \mid k+2) = \hat{W}(k \mid k+1)$ $+A(k)A(k+1)G(k+2)\tilde{Z}(k+2 | k+1)$ $= \hat{W}(k \mid k) + A(k) [\hat{W}(k+1 \mid k+1)]$ $-\hat{W}(k+1\mid k)$] $+A(k)A(k+1)[\hat{W}(k+2 | k+2)]$ $-\hat{W}(k+2 | k+1)$ $= \hat{W}(k \mid k) + A(k) [\hat{W}(k+1 \mid k+2)]$ $-\hat{W}(k+1 \mid k)$ さらに、(2.20) 式より $k+1 \rightarrow k$, N=2 として、 (2.23) 式を用いて $\hat{W}(k \mid k+3) = \hat{W}(k \mid k+2)$ $+A(k)A(k+1)A(k+2)G(k+3)\tilde{Z}(k+3+2)$ $= \hat{W}(k \mid k) + A(k) [\hat{W}(k+1 \mid k+2)]$ $-\hat{W}(k+1\mid k)$ $+A(k)[\hat{W}(k+1 | k+3) - \hat{W}(k+1 | k+2)]$ $= \hat{W}(k \mid k) + A(k) \begin{bmatrix} \hat{W}(k+1 \mid k+3) \end{bmatrix}$ $-\hat{W}(k+1 \mid k)$ (2.24) 以下同様にして, **(2.20)** 式を用いて $\hat{W}(k \mid k+N) = \hat{W}(k \mid k)$ $+A(k) \begin{bmatrix} \hat{W}(k+1 | k+N) - \hat{W}(k+1 | k) \end{bmatrix}$ (2.25)

よって

$$\hat{W}(k+1 \mid k+N) = \frac{1}{A(k)} [\hat{W}(k \mid k+N) - \hat{W}(k \mid k)] + \phi \hat{W}(k \mid k) \dots (2.26)$$

上式の両辺に $\hat{\phi}\hat{W}(k \mid k+N)$ を加えると

$$\hat{W}(k+1 \mid k+N) = \frac{1}{A(k)} [\hat{W}(k \mid k+N) - \hat{W}(k \mid k)] + \emptyset W(k \mid k) - \emptyset W(k \mid k+N) + \emptyset \hat{W}(k \mid k+N) = \left[\frac{1}{A(k)} - \emptyset\right] [\hat{W}(k \mid k+N) - \hat{W}(k \mid k)]$$

$$+ \mathscr{O} \widehat{W}(k \mid k+N) \qquad \qquad \cdots \cdots (2.27)$$

したがって(2.27)→(2.20)に代入して,N段平 滑値は次式で求まる.

$$\hat{W}(k+1 \mid k+1+N) = \emptyset \,\hat{W}(k \mid k+N) + \prod_{j=k+1}^{k+N} A(j)G(k+1+N)\tilde{Z}(k+1+N \mid k+N) + \left(\frac{1}{A(k)} - \emptyset\right) [\hat{W}(k \mid k+N) - \hat{W}(k \mid k)] \cdots (2.28)$$

宇部工業高等専門学校研究報告 第15号 昭和47年7月

劔

ト式で、 $\hat{W}(k \mid k+N)$ は1段前の出力を遅延回路に 通すことで得られ、 $\hat{W}(k \mid k)$ は Kalman フィルター の出力として得られる. また A, G はゲイン 係数は後 述のように信号値とは関係なく、オフラインで計算でき る.

よって(2.28) 式のN段平滑器は簡単に作ることが できる. この平滑器は、サンプル時点が0~Nまで進む 間は停止しており,N+1段目になって初期値 $\hat{W}(0 \mid N)$ を基にして動き始める. この初期値Ŵ(0 | N) は次のよ うにして求まる. すなわち, j≥k について, (2.20) 式より, k=0として

$$\hat{W}(\mathbf{0} \mid j) = \hat{W}(\mathbf{0} \mid j-1) + \prod_{j=0}^{j-1} A(j) \{ W(j \mid j) - \hat{W}(j \mid j-1) \} \cdots \cdots (2.29)$$

この初期値計管の初期値は Ŵ(0↓0) で、前報と同じ く値は1である.すなわち,jが0**~**Nの間,Ŵ(0 | 0), $\hat{W}(0 \mid 1), \dots, \hat{W}(0 \mid N)$ として進行する.

3. 多段平滑誤差^{4),5)}

次に多段平滑を行なった場合の誤差について論じる. (2.19) 式に Kalman フィルターの結果, 前報(54) 式

$$\hat{W}(k+1+N | k+1+N) - W(k+1+N | k+N) = G(k+1+N) \tilde{Z}(k+1+N | k+N) を代入して \hat{W}(k+1 | k+1+N) - B(k+1+N) \hat{W}(k+1+N | k+1+N) = \hat{W}(k+1 | k+N) - B(k+1+N) \hat{W}(k+1+N | k+N) (3.1) ここで, B(k+1+N) = $\prod_{j=k+1}^{k+N} A(j) \ge isivit. (3.1) 式の両辺に W(k+1) を加えるき \tilde{W}(k+1 | k+1+N) + B(k+1+N) \hat{W}(k+1+N) = \tilde{W}(k+1 | k+N) + B(k+1+N) \hat{W}(k+1+N) + B(k+1+N) \hat{W}(k+1+N | k+N) m辺を自束し平均を取って分散を求めるき P(k+1 | k+1+N) + {B(k+1+N)}^2 E[{\hat{W}(k+1+N | k+1+N)}^2] = P(k+1 | k+N)$$$

 $+ \{B(k+1+N)\}^2 E(\{\hat{W}(k+1+N \mid k+N)\}^2)$ $\dots (3.2)$ 上式において, 前報 (91), (92) 式より, 全てのk, j について $E[\widetilde{W}(k \mid j) \widehat{W}(k \mid j)] = 0$ を用いた.よって P(k+1 | k+1+N) = P(k+1 | k+N) $+\{B(k+1+N)\}^{2}\{E[\{\hat{W}(k+1+N \mid k+N)\}^{2}]$ $-E[\{\hat{W}(k+1+N \mid k+1+N)\}^2] \cdots (3.3)$ ここで、前報(94)式と同様にして、(3.3)右辺第 2項は $E[\{\hat{W}(k+1+N \mid k+N)\}^2]$ $-E\left[\left\{\hat{W}(k+1+N\mid k+1+N)\right\}^{2}\right]$ =P(k+1+N | k+1+N) - P(k+1+N | k+N) $\dots (3, 4)$ さらに前報(49)式 $P(k+1 | k+1) = \{1 - G(k+1)\}P(k+1 | k)$ より $k+1 \rightarrow k+N$ として, (3.4) 式は P(k+1+N | k+1+N) - P(k+1+N | k+N)=-G(k+1+N)P(k+1+N | k+N) $\dots (3.5)$ よって (3.3), (3.4), (3.5) 式より P(k+1 | k+1+N) = P(k+1 | k+N) $-\{B(k+1+N)\}^{2}G(k+1+N)P(k+1+N \mid k+N)$ $\dots (3.6)$ 上式は N 段平滑誤差分散を 求める式である. 同式に おいて、 $P(k+1+N \mid k+N)$ は既に前報で求めた予測 誤差分散であり、B、Gはゲイン係数であるので後述の 如くして求めることができる.ところが $P(k+1 \mid k+N)$ は N-1 段平滑誤差分散であるので、別に求めねばなら ず不便である.よってこの項を異った形で表わすことに する. それには(2.25)式を用いて $\widetilde{W}(k+1 \mid k+1+N) = W(k+1)$ $-\hat{W}(k+1 | k+1+N)$ $=W(k+1) - \hat{W}(k+1 \mid k+1)$ $-A(k+1)\{\hat{W}(k+2 \mid k+1+N)\}$ $-\hat{W}(k+2 \mid k+1)$ $\widetilde{W}(L + 1 + L + 1)$

$$= W(k+1 | k+1) -A(k+1) \{ \hat{W}(k+2 | k+1+N) - \hat{W}(k+2 | k+1) \}$$

Res. Rep. of Ube Tech. Coll., No.15 July, 1972

よって $\tilde{W}(k+1 \mid k+1+N) + A(k+1)\hat{W}(k+2 \mid k+1+N)$ $= \tilde{W}(k+1 \mid k+1) + A(k+1) \hat{W}(k+2 \mid k+1)$ $\dots (3.7)$ (3.2) 式の誘導と同じく、両辺を自乗して平均を とり分散を求めると P(k+1 | k+1+N) = P(k+1 | k+1) $+ \{A(k+1)\}^{2} \{E(\{\hat{W}(k+2 \mid k+1)\}^{2})\}$ $-E[\{\hat{W}(k+2 \mid k+1+N)\}^2] \dots (3.8)$ ここで,(3.4)式と同じく $E[\{\hat{W}(k+2 \mid k+1)\}^2] = P(k+2) - P(k+2 \mid k+1)$ $E[\{\hat{W}(k+2 \mid k+1+N)\}^2]$ = P(k+2) - P(k+2 | k+1+N)を代入して, (3.8) 式は P(k+1 | k+1+N) = P(k+1 | k+1) $+ \{A(k+1)\}^{2} [P(k+2 | k+1+N)]$ -P(k+2 | k+1)] $\dots (3.9)$ 故に P(k+2 | k+1+N) $=\frac{1}{\{A(k+1)\}^2}(P(k+1 \mid k+1+N)$ -P(k+1 | k+1) + P(k+2 | k+1) \dots (3.10) よって、 $k+1 \rightarrow k$ として P(k+1 | k+N) = P(k+1 | k) $+\frac{1}{\{A(k)\}^{2}}[P(k \mid k+N) - P(k \mid k)] \quad (3.10)$ (3.10) 式を(3.6) 式に代入して,N 段平滑誤差 分散は次式で求まる. P(k+1 | k+N) = P(k+1 | k) $+\frac{1}{\{A(k)\}^2}[P(k \mid k+N)-P(k \mid k)]$ $-\{B(k+1+N)\}^2G(k+1+N)P(k+1+N \mid k+N)$ (3.11)

上式において、P(k+1|k)、P(k+1+N|k+N)は 予測誤差分散、P(k|k)は濾波誤差分散であるので、 前報の Kalman フィルターで求められている. よって 同式においては、容易に誤差分散を計算することができ る.

くり返し計算の初期値は P(0 | N) であり,次のよう にして求める. すなわち (3.6) 式より

 $P(k+1 \mid j) = P(k+1 \mid j-1)$ $- \{B(j)\}^2 G(j) P(j \mid j-1)$ j=k+1, k+2, …… …… (3.12) において, k=0として, P(0 | 1), P(0 | 2), ……, P(0 | N) と順次求める.

4.計算例

例として、前報に続き、2段平滑について論じる. (2.28) 式において N=2 として $\hat{W}(k+1 \mid k+3) = \vartheta \hat{W}(k \mid k+2)$ $+A(k+1)A(k+2)G(k+3)\tilde{Z}(k+3 \mid k+2)$ $+ \left\{ \frac{1}{A(k)} - \vartheta \right\} [\hat{W}(k \mid k+2) - \hat{W}(k \mid k)]$

..... (4.1)

初期値の計算は(2.29)式より

$$\hat{W}(0 \mid j) = \hat{W}(0 \mid k-1) + \prod_{i=0}^{k-1} A(i) \{ \hat{W}(k \mid k) - \hat{W}(k \mid k-1) \} (4.2) k=1, 2$$

として、 $\hat{W}(0|2)$ を求める. ただし前報 (46) 式よ り $\hat{W}(0|0)=0$ であり、 $\hat{W}(j|j)$ 、 $\hat{W}(j|j-1)$ は Kalman フィルターの出力である. (4.2) 式を図示す ると Fig. 4.1 のようになる. その構造は Kalman フ

Fig. 4 • 1 Computation of Initial Value

ィルターに,遅延要素,ゲイン要素及び和,差回路が附加 したものである,初期値として,k=1において $\hat{W}(0|0)$ を必要とする他は,遅延回路を通った前段の出力を使っ て動作する.N=2の場合は受信信号は $\tilde{Z}(2|1)$ のみ初期 値の計算に用いられ,その後の $\tilde{Z}(3|2)$ 以後は次の2 段平滑器の入力となる。サンプル時点が進んでk=2になると $\hat{W}(0|2)$ を初期値として,(4.1)式の2段

平滑器が動作する.

プロック・ダイヤグラムを Fig. 4.2に示している. その動作は,(4.1)式の第1項を,受信信号より作 られる第2項,および1段前の出力と濾波値との差より 作られる第3項で修正しながら,2段平滑値を作り出 す.

次に誤差分散は (3.11) 式より P(k+1 | k+3) = P(k+1 | k) $+ \frac{1}{\{A(k)\}^2} \{P(k | k+2) - P(k | k)\}$ $- \{A(k+1)A(k+2)\}^2 G(k+3)P(k+3 | k+2)$(4.3)

このくり返し計算の初期値は P(0 | 2) であり,(3. 12) 式より求まる. すなわち

 $P(0 \mid 2) = P(0 \mid 1) - \{A(0)A(1)\}^{2}G(2) \cdot P(2 \mid 1)$(4.4)

ここで、P(0|1), P(2|1) および A, G はいずれ も、前報で求められている. これらの計算の流れ図を示 すと Fig. 4.3 のようになる. 同図において、2 段平滑 器を設計するに必要なものは、ゲイン係数 A, G のみ であるので、点線のように、P(k+1|k), G(k+1), A(k), P(k+1|k) のみの計算を、オフ・ラインで前 もって計算しておけば良い. このようにして、ゲイン係 数 M(1|3) および 1/A(k) - 0 の値を各量子化誤差分 散について求めたものを Table 4.1 に示す. (3 段平 滑化の場合のゲイン係数 M(1/4) についても示してい る)

ゲイン係数について、2段平滑器の動作を考察してみる. 1/A(k) - 0の値は量子化雑音分散 Rの値が増加するに伴い、単調に減少し、Mの値は、R = 1、すなわち信号電力と雑音電力が等しくなるまでは増加している. 前報で論じたように、Aの値は Rが大なる につれて増

加する傾向をもっている。例えば、Rが非常に小さい時 は、前報(47)式よりG(k+1)=1、よってFig.4.3 の流れ図において、P(k+1|k+1)=0となり、A(k)の値も非常に小さくなる。この時M=0である。同じ 時1/A(k)-0は逆に非常に大きくなる。このような状

Res. Rep. of Ube Tech. Coll., No.15 July, 1972

Table 4.1 Gain Coefficients

R = 0.001

k	M(1 3)	$\frac{1}{A(k)} - \emptyset$	M(1 4)
1.	0.000692	0.0360	0.000018
2.	0.000674	36.03	0.000017
3.	0.000674	36.99	0.000017
R=0.01			
1.	0.0326	0.0360	0.006030
2.	0.0278	3.636	0.005142
3.	0.0276	4.401	0.005112
4.	0.0276	4.432	0.005111
R=0.1			
1.	0.2084	0.0360	0.1133
2.	0.1651	0.3960	0.0859
3.	0.1405	0.6525	0 . 0 776
4.	0.1357	0.7664	0.7510
5.	0.1343	0.8063	0.0743
6.	0.1338	0.8190	0.0709
R = 1.0			
1.	0.2329	0.0360	0.1769
2.	0.1865	0.0720	0.1460
3.	0.1589	0.1055	0.1268
4.	0.1416	0.1348	0.1143
5.	0.1305	0.1588	0.1062
6.	0.1232	0.1777	0.1007
7.	0.1183	0.1920	0.0971
8.	0.1150	0.2025	0. 0 946
9.	0.1128	0.2100	0.0929
	•••••	•••••	•••••
∞ .	0.1081	0.2274	0.0894
R = 10.0			
1.	0.0741	0.0360	0.0617
2.	0.0689	0.0396	0.0630
3.	0.0646	0.0430	0.0593
4.	0.0610	0.0467	0.0562
5.	0.0580	0.0495	0.0535
6.	0.0554	0.0524	0.0513
	••••••	•••••	••••••
∞.	0.0387	0.0819	0.0363
$M(k+1 k+1+N) = \prod_{j=k+1}^{k+N} A(j)G(k+1+N)$			

R: Variance of Quantizing Noise

況下においては、2段平滑値を生成するに受信信号はさ ほど重要な修正項とはならず、 $W(k \mid k+2) - W(k \mid k)$ すなわち同じ信号を同じ時点で推定したもの(濾波)と 2段後の受信信号を得た後で推定したものとで、どの程 度の変化があったかという情報の方がより重要な要素と なることを示している。 逆に R が非常に大なる場合は、G(k+1)=0となり、 A(k)の値は大きくなる.よって $1/A(k)-\phi$ は小さく なり、受信信号の方が有効な修正項となる.以上のこと は検討した結果 3 段平滑化の場合についても言える.

Fig. 4.4, Fig. 4.5にはそれぞれ,各分散 Rに対 する,2段および3段平滑 誤差分散 P(k | k+2), P(k | k+3)の値を示している.さらに Fig. 4.6には濾波,1段および2段,3段平滑化して定常時に得られる量子化雑音低減効果を示している。すなわち本来,予測 $量子化系の復調出力は <math>W(k+1)+\delta(k+1)$ であるので 誤差分散は R である。濾波,平滑化を行なった場合の 誤差分散は P であるので, P/R が,量子化誤差低減効 果を示すことになる。

なお,3段平滑化については,(4.1),(4.3)式 を導いたと同じ方法で,(2.28),(3.6)式において N=3として求めたものである.

Fig.4.6について,量子化雑音低減効果を考察して みると,平滑化は各平滑化共,同様の傾向を示している が,段数が増すに従ってその効果は著しい.特に*R*が **0.1~1.0**の間で顕著に現われている.

Fig. 4.4 Error Covariance 2- stage Smoothing

Fig. 4.6 Noise Reduction Ratio

5.むすび

劔

- · ·

以上,前報に引き続いて,多段平滑化を行なって量子 化誤差分散を低減する問題について検討した.

- 1. その結果, 濾波, 1段, 2段, 3段平滑化となる に従って, 用いる情報が多くなるので雑音低減効果 は著しくなる.
- 2. しかし,量子化雑音の分散が 0.1~1.0 以外の場 合は,大きい改善はない.
- 3. 平滑器の設計に当っては,ゲイン係数の計算を前 もってオフラインで行えるので,サンプル時点の進 むに従って,順次前もって求められたゲイン係数を 切換えて行くだけで,最適な推定ができる.
- 4. 装置の複雑化については,

$$M(k+1 | k+1+N) = \prod_{i=k+1}^{k+N} A(i)G(k+1+N)$$
が変

るのみで, さほどデメリットとはならないが,

5. 初期値を別の平滑器(固定点平滑器)を用いて求 める必要がある.

等が明らかとなった.最後に本報では、前報に引き続いて量子化雑音は、テレビ信号とは無関係であるという 仮定を行なっている.この点について前報でも指適したように、実際には量子化雑音は量子化器入力と相関があり、したがって予測量子化系においては、E(W(k+1)) $\delta(k+1) = 0$ である.この点を考慮した場合については現在検討を行なっているので、近い機会に報告する予定である.

参考文献

1) 藤本: "テレビジョン信号の ガウスーマル コフモ デルと DPCM 系への応用", 宇部高専研究報告,

11, p. 13(昭45年7月)

- 2) 藤本: "テレビ信号の予測量子化",昭46電気四学 会中国支部連大,51708
- 3) 藤本: "カルマンのフィルター理論によるテレビ 信号伝送用予測量子化系の設計",テレビ学会誌, 24, 11, p. 914
- 4) J. S. Meditch: Stochastic Optimal Linear Estimation and Control, Mc Graw Hill (1969)
- 5) Sage, Melsa : Estimation Theory with Appli cations to Communications and Control, Mc Graw Hill (1971)

(昭和47年5月1日受理)