オゾンの発生と応用

杉 光 英 俊

はじめに

オゾンというと、今日成層圏のオゾン層が頭に浮かぶ。オゾンは紫外線の 吸収能力が大きく、地上10~50kmの高空にあるオゾン層は、宇宙から飛来す るエネルギーの高い紫外線を吸収し、地上の生命を保護している。しかし同 時に、オゾンは実生活にも極めて有用な物質である。オゾン分子 O₃ が、酸 素 O₂にもう1個の酸素がついていることからもわかるように、オゾンは極 めて酸化力が強く、しかも分解生成物が無害な酸素であるという利点があ る。その強力な酸化作用と殺菌作用は、上水、プール、下水、排水の浄化、 また食品殺菌、電子部品洗浄、養殖などの多方面に応用されている。本稿は 筆者の最近の発表をもとに再構成したもので、次の3章からなる^{1,2}。

第1章 オゾン:オゾンとは何か

第2章 オゾナイザの原理:空気や水からどうしてオゾンができるのか 第3章 オゾン応用技術の展望:オゾンはどこに利用されているか

第1章 オゾン

*オゾンとは何か

1・1 オゾンの存在

オゾンは,時々コピー機械の近くでかすかに感じることのある生臭い酸化 性の気体である。1840年硫酸の電解中にシェーンバインによって発見され, 特異な臭いから,ギリシャ語の "臭気"の意味である "オゾン" と命名され た。成層圏のオゾン層では15ppm以上の高濃度に存在している。

地表でのオゾン濃度は通常極めて低く10^{-*} vol%以下である。以前は空気 の清浄な郊外に多いとされていたが,近年は逆に都会での光化学スモッグに よる増加が問題になっている。ただし,光化学スモッグに見られる急性の障 害や目の刺激等はアクロレインなどの有機過酸化物による。オキシダントと いう言葉は,もともとは測定に用いる沃素イオンを酸化する気体という意味 であり,この中には有機過酸化物や窒素酸化物等も含まれているが,これら がしばしばオゾンと混同されているようである。

自然界のオゾンは、一般には紫外線によって発生する。酸素分子が波長 200nm以下の紫外線を吸収すると、酸素原子に解離し、これが酸素分子に 再結合することによりオゾンが生成する。

 $O_2 \xrightarrow{h \nu} 2O$ $O + O_2 + M \rightarrow O_3 + M$

ただし、光化学スモッグにおけるオゾンの生成はつぎのスモッグ反応と呼ば れる連鎖反応による。

 $CH_{3}O_{2} + NO \longrightarrow CH_{3}O + NO_{2}$ $NO_{2} \xrightarrow{h \nu} NO + O$ $O + O_{2} + O_{2} \longrightarrow O_{3} + O_{2}$

すなわち,大気中の有機過酸化物と酸化窒素との反応によって二酸化窒素 が生じ,これが光分解されて生じた酸素原子が,オゾンをつくる。生じた一 酸化窒素は再び最初の反応で二酸化窒素をつくるので,連鎖的にオゾンが生 成される。

もう1つの自然界での発生は放電プラズマによるものである。雷や電気ス パークにおいては、5 eV以上のエネルギーをもつ電子と酸素分子の衡突が 起こることによって、同様に酸素が解離してオゾンが生成する。このことに ついては、次章で詳しく述べる。

- 340 -

1・2 オゾンの化学

オゾンは酸素の同素体で3個の酸素原子からなる常温で微青色の気体であ る。分子式 O₃ で、分子量48、融点 -193 °C、沸点 -112 °C。不安定で酸化力 が強く、常温でも自然に分解して酸素にかわる。基底状態のオゾン X¹A₁ の 分子構造は結合角116度の二等辺三角形型で・0-0-0・のビラジカル構造 をもつ³⁾。254 nmを中心とする紫外線を強く吸収し、この性質がオゾン層の 主な役割を担っていると同時に、オゾン濃度の測定にも利用されている。表 1.1 にオゾンの代表的物性をあげた。

 表1.1
 オゾンの物理定数

 分子量
 48

 沸
 点
 ℃
 -111.9

フリ里		40
沸 点	°C	-111.9
融点	°C	-193
密度0℃	g/l	2.144
臨界温度	°C	-12.1
臨界圧力	atm	54.6

表1.2にオゾンの酸化力を他の酸化剤と比較した。数値が大きいほど酸 化力が大きいことを表わす。これより,オゾンが塩素よりもはるかに大きな 酸化力をもつことがわかる。化学的オゾン測定法は,普通この酸化力を利用 している。

表1.2 酸化電位(V)25℃

フッ素	$F_2 + 2e^- \rightarrow 2F^-$	2.87
オゾン	$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	2.07
過酸化水素	$H_2O_2 + 2H^+2e^- \rightarrow 2H_2O$	1.77
過マンガン酸	$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.67
二酸化塩素	$ClO_2 + e^- \rightarrow ClO_2^-$	1.50
次亜塩素酸	$HOCl + H^+ + 2e^- \rightarrow Cl^- + H_2O$	1.49
塩 素	$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36
酸素	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23

1・3 オゾンの毒性とオゾン利用の安全性4)

オゾンの生体毒性研究は動物実験ではかなり広く行われており、高濃度で

は肺繊維間物質の破壊,肺細胞内 DNA, RNA の変化,放射性物質様特性 による細胞の老化現象等が明らかにされているが,発ガン性は認められてい ない。表1.3に主な症状を示した。具体的には空気中にオゾン0.1ppm程度

表1.3 オゾン暴露による人体への影響

濃度/ppm	人体への影響
0.02 - 0.05 0.06 0.1 - 0.3	特有の臭いがわかる 慢性肺疾患患者の換気能影響なし 鼻,喉の刺激がある
0.6-0.8	胸痛,せき,呼吸困難,気道抵抗増加 換気能低下
1 - 2	疲労感,頭重(1-2時間で)
10	呼吸困難,肺水腫(数十分で)
15 - 20	肺水腫で死亡の危険がある(約2時間で)

のものを2時間吸入すると肺活量は20%減少し, 1~2ppmを1~2時間 吸入すると粘膜,中枢神経に障害が起こり,数時間では思索が混乱する。ま た3ppmでは気管支を刺激し,二酸化窒素中毒に似た肺水腫を起こすとい われる。一般に作用は他の酸化性物質との共存で増大し,オゾン発生試料に 空気を用いた場合は酸化窒素が毒性発現に大きく関わっているとの見方も ある。

オキシダントの公害防止環境基準は1時間値0.06ppm(米国は0.08ppm), 労働衛生における作業場のオゾンの許容濃度は0.1ppm(8時間 TWA 値: Time Weight Average, 日本産業衛生学会 日本産業医学会)である。この 濃度は CO 50, Cl₂ 1.0より小さく,ホスゲン0.1ppmに匹敵する。

しかし幸いにも,オゾンは強い特異臭をもち,許容濃度のおよそ1/10~ 1/5である0.01~0.02ppm前後で感知されるから,実際面での危険性はそれ ほど大きくないともいえる。また,オゾン処理は基本的には酸素による酸化 であり,未知の有毒物質が副生する危険性はそれほど大きくはない。しか し,オゾン発生機が一般生活に普及していく場合は,オゾン自体のみでな く,オゾンと他の物質との相互作用をふくめて健康面への配慮が十分になさ れる必要がある。

第2章 オゾナイザの原理とオゾン生成反応

*空気や水からどのようにしてオゾンができるのか/

オゾンの代表的な製造方法は紫外線式,放電式,水電解式の3種である。 これまで工業的規模のオゾナイザはもっぱら放電式であったが,最近小規模 施設で水電解式の利用が著しい。ここでは,まず放電式について研究の状況 を述べ,その後に水電解式オゾナイザについて概説する。反応式に付記した 速度定数(300K)の中,大部分は筆者が最近まとめた表から⁵⁾,電子衡突 の速度定数(E/N = 100Td)は最近の論文より抜粋したものである⁶⁾。な お,単位は二次反応で cm³s⁻¹,三次反応では cm⁶s⁻¹とした。

2・1 放電式オゾナイザにおけるオゾン発生

2・1・1 オゾン発生の原理

放電式オゾナイザの中でも、古くから研究がすすめられている無声放電式 を中心に研究の現状を述べる。最近沿面放電式や、金属細線充填式など、い くつかのタイプの異なるオゾナイザも開発されているが、オゾンを発生させ る原理は同じである。

図2.1に典型的な同軸二重円筒型の Siemens 型と呼ばれる無声放電式オ ゾナイザを示した。この形式のオゾナイザは、一般に電極の一方、または両 方をガラスやセラミックス等の誘電体で被覆した構造が特徴となっている。 このような電極を1~2mmの空隙で対向させ、10~20kV、50~2kHz程度の 交流を印加すると、空隙全体に薄青色に光る微細な放電が発生し、そこに酸 素を含む原料気体を流すことによりオゾンが得られる。

図2.2は、図2.1のオゾナイザに0.1~0.7atm程度の酸素を流した場合のオゾン発生特性、R₀からR₃式までが説明に用いられた反応機構である⁷⁾。

\mathbf{R}_{0}	$O_2 + e^- \rightarrow 2O + e^-$	$k = 1.95 \times 10^{-9}$
\mathbf{R}_{1}	$O+O_2+O_2 \rightarrow O_3+O_2$	$k = 6.3 \times 10^{-34}$
R_2	$O + O_3 \rightarrow 2O_2$	$k = 8.0 \times 10^{-15}$
R ₃	$O_3 + e^- \rightarrow O_2 + O + e^-$	$\mathrm{k}=2.52\! imes\!10^{-8}$

電子衡突によって生じた R₀式の酸素原子が周囲の酸素分子と結合してオ ゾンを生成する。発生する酸素原子の量は電流に比例するから、オゾン濃度 が低いときは、オゾン発生量も電流に比例する。オゾン濃度が高くなると、 R₂、R₃式による分解速度が大きくなり、ついにはオゾン濃度の増加がおこ らなくなる放電平衡の状態に達する。

以上の説明は,放電によるオゾン発生に対する基本的な考え方である。し かし,実際の反応は,このように単純なものではなく,今日もなお検討が行 われている。概略を以下に紹介する。

2•1•2 無声放電反応の特質

反応面からみたオゾン発生の特徴を図2.3に示した。放電は印加電圧の 半周期ごとに、電極上の微小点でパルス的に起こる。この電気的特質は、オ ゾナイザが空隙とガラスの直列静電容量とする部分放電の等価回路でおよそ 理解することができる⁸⁾。表2.1に反応解析によく用いられる微小放電の パラメター例を示した。反応面からみた特徴は、雰囲気温度がほぼ室温に保 たれていることと、反応が各微小放電ごとに終了していることである。この ような非連続的反応系においては、滞留時間 Δ t 当りのオゾン濃度の増加 Δ O₃/ Δ t は滞留時間 Δ t 内における放電の繰り返し頻度の関数となり、反 応速度解析における微分式 d[O₃]/dt とは一致しない。実際の d[O₃]/dt に相当する値は、全電極面を瞬間的に放電させる単発無声放電法によりはじ

図2.3 無声放電とオゾン発生状況

時 間→→

表2.1 微小放電のパラメター例

放 電 柱 半 径 = 100μ m 気 体 密 度 = 2.4×10^{19} cm⁻³ 電 子 密 度 = 10^{14} cm⁻³ 換算電界 E/N = 100-200 Td 電子エネルギー = 5-10 eV ガ ス 温 度 = 約300 K

めて測定された。)。

2・1・3 酸素原料オゾナイザにおける反応

[1] 電子衝突による酸素活性種の生成

反応解析に必要な酸素分子のポテンシャルエネルギー曲線を図 2.4 に, 酸素原子,分子の主な励起準位を表 2.2 および表 2.3 に示した¹⁰⁾。酸素分 子の基底状態は $X^3 \Sigma_s^-$ で,熱解離エネルギーは5.1 eV である。

図2.4 酸素分子のポテンシャルエネルギー曲線(Schöfield, 1979)

表	2	. 2	酸素原子の電子励起状態	
_				

電子配置	項	J	エネルギー/eV
$1S^{2}2S^{2}2P^{4}$	۶P	2	0
		1	0.01965
		0	0.02808
	1D	2	1.96728
	^{1}S	0	4.18958

図2.5に酸素分子の電子衝突断面積を示した¹¹⁾。フランクコンドン遷移 では酸素分子の解離は約6eVで起こり,基底状態のO(³P)原子,または励

第 36 号

準 位	X ³ Σ _g ⁻	$a^{\imath}\Delta_{\tt g}$	$b^{1}\Sigma_{g}{}^{+}$	$C^{ \mathtt{s}} \Delta_{ \mathtt{u}}$	$A^{\mathtt{3}}\Sigma_{\mathtt{u}}{}^{+}$	$c^{1}\Sigma_{u}{}^{-}$	$B^{\mathfrak{s}}\Sigma_{\mathfrak{u}}{}^-$
励起電圧/eV	0	0.977	1.63	4.26	4.34	4.49	6.12
垂直励起電圧/eV	0	0.98	1.63	6.1	6.1	6.1	8.4

表2.3 酸素分子の電子励起状態

起状態のO(¹D)原子に解離する。

プラズマ反応の解析においては、荷電粒子衝突の反応速度論的取扱いが問題になる。いま、酸素分子と電子との非弾性衝突で生成する励起酸素種を O₂* で表すと、

$$d[O_2^*]/dt = k_0[e^-][O_2]$$

となる。電子エネルギー ϵ ,分布関数を $f(\epsilon)$,励起断面積を σ ,電子のランダム速度を v_r とおくと、 k_0 は次式で表される¹²⁾。

$$\mathbf{k}_{0} = \int \mathbf{v}_{\mathbf{r}} \sigma(\boldsymbol{\varepsilon}) \mathbf{f}(\boldsymbol{\varepsilon}) d\boldsymbol{\varepsilon}$$

- 348 -

一方,電子の平均密度 $[e^-]$ は,電子のドリフト速度 v_e,全電流に対す る電子電流の割合 κ ,放電面積 S,空隙長 L,放電電力 W,平均電界 E (= V/L)および電子の電荷量 g の諸量を用いて,次のようになる¹³⁾。

 $[e^{-}] = \kappa W/Sv_e gEL$

 $\sigma = k_0/v_o$ の関係があるから、Nを粒子密度として、

$$d[O_2^*]/dt = k_0[e^-][O_2] = \frac{\kappa \sigma W([O_2]/N)}{Sq(E/N)L}$$

すなわち、kと、換算電界 E/N、その関数である σ 、酸素分圧 $[O_2]/N$ を 知ることによって、 O_2^* の発生速度を評価することができる。

${ m R}_{0a}$	$e^- + O_2 \rightarrow O_2(a\Delta_g) + e^-$	$k = 6.96 \times 10^{-10}$
Rоъ	$e^- + O_2 \rightarrow O_2(b\Sigma_{\varepsilon}) + e^-$	$k = 1.62 \times 10^{-10}$
${ m R}_{0{ m c}}$	$e^-+O_2 \rightarrow O_2(A^3\Sigma_u^+) \rightarrow e^-+O(^3P)+O(^3P)$	$k = 1.95 \times 10^{-9}$
R o d	$e^- + O_2 \rightarrow O_2(B^3\Sigma_u^-) \rightarrow e^- + O(^3P) + O(^1D)$	$k=1.26\!\times\!10^{-9}$

[2] オゾン生成反応

一般に考えられているオゾン生成反応 $O+O_2+M \rightarrow O_3+M$ は,

$$O+O_2 \rightleftharpoons O_3^*$$
 k_a, k_{-a}
 $O_3^*+M \rightarrow O_3+M$ k_c

の連続した過程からなる。M は第三体といわれ、O₃*の余剰のエネルギー を吸収する物質であればなんでもよい。酸素を基準に添加気体 A の第三体 効率 ε をとれば、この混合気体における酸素原子の消滅速度は k₁ を酸素基 準の速度定数として、

 $-d[O]/dt = k_1[O][O_2][M] \qquad [M] = [O_2] + \varepsilon [A]$

となる。表 2.4 に, εの値をあげた¹⁴⁾。O₃* 濃度に定常状態の仮定を適用す ると, O₃生成速度は,

徳山大学論叢

М	02	He	Ar	N 2	CO ₂	N₂O	CF 4	SF 6	H₂O
ε	1.0	0.62	0.62	0.86	2.3	2.3	2.5	5.2	9.2

表2.4 $O+O_2+M \rightarrow O_3+M$ における M の第三体効率

 $d[O_3]/dt = k_a[O_2][M]/(k_{-a}+k_c[M])$

となり、常圧下におけるオゾン生成の速度は、酸素原子の消滅速度に一致し ていると思われていた($k_{-a} \gg k_{e}[M]$)。しかし、観測されたオゾンの生成 速度は、酸素原子消滅速度に比べて著しく遅く、これを説明するためいくつ かの機構が提案されている。

その一つは,再結合の後,さらに何段階かの励起オゾンの緩和過程が存在 するというものである^{15),16)}。最近,この過程のみでは,なお説明が困難であ るとして,さらに新しい機構が提案されている^{17),18)}。

 $O+O_{2}({}^{3}\Sigma_{g}^{-})+O_{2}\rightarrow O_{3}({}^{1}A_{1})+O_{2}$ $O+O_{2}({}^{3}\Sigma_{g}^{-})+O_{2}\rightarrow O_{3}({}^{3}B_{2})+O_{2}$ $O+O_{2}({}^{3}\Sigma_{g}^{-})+O_{2}\rightarrow O_{3}({}^{1}A_{1})+O_{2}$ $O_{3}({}^{3}B_{2})+O_{2}\rightarrow O_{3}({}^{1}A_{1})+O_{2}$ $O_{3}({}^{4}B_{2})+O_{2}\rightarrow O_{3}({}^{1}A_{1})+O_{2}$ $O_{3}({}^{3}B_{2})+O_{2}\rightarrow O_{3}({}^{1}A_{1})+O_{2}$ $O_{3}({}^{3}B_{2})+O_{2}\rightarrow O_{3}({}^{1}A_{1})+O_{2}$

すなわち、励起状態のオゾンO₃(³B₂)、O₃*および基底状態のO₃(¹A₁)の 3種が一定割合で同時に生成するという複雑な機構である。

一方,全く別の,〇原子を経由しない生成機構の寄与も提案されている。)。

$$R_4 \qquad O_2^* + O_2 \rightarrow O_3 + O_3$$

ここで、 O_2^* はまだ同定されていないが、電子励起酸素、 $O_2A(^{3}\Sigma_{-})$ 、 A($^{3}\Delta_{-}$)、c($^{1}\Sigma_{-}$)、または高振動励起酸素とされる。

なお電流効率の値からみてイオンを経由する反応の寄与は小さい。

「3]オゾンの分解反応

気相におけるオゾンの熱分解は簡単には、次の反応機構によるとして説明 されている。

 $\begin{array}{ll} R_{-1} & O_3 + M \to O + O_2 + M & k = 2.1 \times 10^{-27} (M = O_2) \\ R_2 & O + O_3 \to 2O_2 & k = 8.0 \times 10^{-15} \\ -d[O_3]/dt = 2k_{-1}k_2[O_3]^2[M]/(k_1[O_2][M] + k_2[O_3]) \end{array}$

すなわち、オゾンの熱分解速度は、過剰酸素下では酸素濃度に逆比例し、オ ゾン濃度については二次である¹⁹。

放電場ではさらに、次のような反応過程が重要になる²⁰⁾。

$R_{\mathfrak{s}}$	$O_2(a) + O_3 \rightarrow O + 2O_2$	$k = 3 \times 10^{-15}$
${ m R}_{6}$	$O_2(b) + O_3 \rightarrow O + 2O_2$	$k = 2.1 \times 10^{-11}$
\mathbf{R}_7	$O(^{1}D)+O_{3} \rightarrow O_{2}+O_{2}$	$k = 1.2 \times 10^{-10}$
R۱	$O_2^* + O_3 \rightarrow O + 2O_2$	$k = 2.8 \times 10^{-15}$

電子付着によって生じた負イオンがオゾンを解離する可能性もある。

$O_2^- + O_3 \rightarrow O_3^- + O_2$	$k = 6 \times 10^{-10}$
$O_3^- + O \rightarrow O_2^- + O_2$	$k = 2.5 \times 10^{-10}$

このような励起種の反応は次のような失活反応との競争にある。

R۹	$O(^{1}D)+O_{2} \rightarrow O+O_{2}(a)$	$k = 3.7 \times 10^{-11}$
R 10	$O_2(a) + O_2 \rightarrow O_2 + O_2$	$k = 1.6 \times 10^{-18}$
R_{11}	$O_2(b) + O_2 \rightarrow O_2 + O_2$	$k = 4.0 \times 10^{-17}$

図2.6に酸素中で70種の反応を考慮したシミュレーション例を示した²¹⁾。 各種励起種が放電後数 ns オーダで発生し、その後ゆっくりとオゾンが生成 する様子が計算されているが、実測との対応はまだ十分とはいえない。

図2.6 酸素中放電における粒子濃度変化(Eliasson ほか, 1987)

2・1・4 空気原料オゾナイザにおける反応の特徴

一般に、純酸素における最大オゾン生成効率は、ほぼ200g/kwhで、空気 原料では約半分の100g/kwhである。空気中の酸素は21%にすぎず、窒素か ら酸素へのエネルギー移動の寄与が推定されている^{22,23)}。窒素分子のポテン シャルエネルギー曲線を図2.7に、また窒素分子の励起準位を表2.5に示 した²⁴⁾。

窒素分子の基底状態は X(${}^{1}\Sigma_{g}^{+}$) で,それより6.2eV上に A ${}^{3}\Sigma_{u}^{+}$, さらに その上に B ${}^{3}\Pi_{g}$, C ${}^{3}\Pi_{u}$ 等がある。これらの励起分子は、いずれもオゾン生 成に寄与するが、N 原子は NO を生成し、これが高次の NOx になるととも にオゾンを破壊する。通常 NOx の生成量はオゾンの 1 %程度である。

$$N_2 + e^- \rightarrow N_2(A), N_2(B), N_2(c) + e^-$$

 $\rightarrow 2N + e$

表2.5 窒素分子の電子励起状態

準 位	$X\Sigma_{g}{}^{+}$	$A^{3}\Sigma_{u}{}^{+}$	$\mathrm{W}{}^{\mathrm{s}}\Delta{}_{\mathrm{u}}$	$a^{1}\Sigma_{u}^{-}$	a¹∏g	$\mathbf{w}^{1}\Delta_{u}$	$\mathrm{E}^{3}\Sigma_{u}^{+}$
励起電圧/eV	0	6.17	7.32	8.52	8.54	9.02	11.88

(a) ポテンシャル曲線

徳山大学論叢

第 36 号

R_{12}	$N_2(c)+O_2 \rightarrow 2O+N_2$	$k = 2.7 \times 10^{-10}$
R_{13}	$N_2(B)+O_2 \rightarrow$	$k = 1.1 \times 10^{-10}$
${f R}_{14}$	$N_2(A) + O_2 \rightarrow$	$k = 3.8 \times 10^{-12}$
R_{15}	$N+O_2 \rightarrow NO+O$	$k = 8.9 \times 10^{-17}$
${ m R}_{16}$	$N+O_3 \rightarrow NO+O_2$	$k = 1 \times 10^{-16}$
R_{17}	$NO + O_3 \rightarrow NO_2 + O_2$	$k = 1.8 \times 10^{-14}$
R 18	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$k = 3.2 \times 10^{-17}$
R_{19}	$O + NO_2 \rightarrow NO + O_2$	$k = 9.7 \times 10^{-12}$
R_{20}	$NO_2 + NO_3 + N_2 \rightarrow N_2O_5 + N_2$	$k = 2.7 \times 10^{-30}$
R_{21}	$O + N_2O_5 \rightarrow 2NO_2 + O_2$	$k < 3 imes 10^{-16}$

図2.8はさらに多くの反応を考慮した空気原料に対する計算結果の一例 である²⁵⁾。

図2.8 空気の放電後の粒子濃度変化(Kogelschatz ほか, 1984)

- 354 -

2・1・5 添加気体の影響

オゾン生成効率向上のために、原料気体中に、Ar、He、SF。等種々の気体を添加する試みが行われている²⁶⁾。純酸素を超える効率は得られていないが、反応面ではいくつか興味ある結果が報告されている。

オゾン生成が R₁反応によるものだけであれば,第三体効果の大きな物質 ほどオゾン生成量の増加が期待される。しかし,現実には速度は大きくなる ものの,生成量は逆に小さくなる。これの説明に,次の競争反応が提案され ている。

$$O_{2}^{*}+O_{2} \rightarrow O_{3}+O \qquad k_{a}$$
$$O_{2}^{*}+A \rightarrow O_{2}+A \qquad k_{b}$$
$$d[O_{3}]/dt = k_{a}[O_{2}^{*}]_{o} e^{-(ka+kb)t}$$

オゾン前駆物質の失活は最終 O₃の減少とみかけのオゾン生成速度増加を同時に説明する³⁷⁾。空気に微量の SF₆を添加した場合には,N₂*発光の増大とともに大幅な生成量の増加が見られるのに対し,純酸素には効果がないことから,励起窒素の寄与が確認された^{23,23)}。

2・1・6 水分の影響

原料気体に水分が含まれていると、オゾン収率は著しく低下する^{30,31)}。実際のオゾナイザでは露点-50℃までの乾燥で運転されているのが普通である。図2.9に酸素原料に1,000 ppmの水分を加えたときの計算結果を示した⁶¹。収率低下の主な原因はO(¹D)とH₂Oの反応により生成したOHによるオゾンの分解と考えられる。

 $\begin{array}{ll} R_{22} & H_2O + O(^1D) \rightarrow 2OH \\ R_{23} & OH + O_3 \rightarrow O_2 + HO_2 \\ R_{24} & HO_2 + O_3 \rightarrow 2O_2 + OH \end{array}$

水分が空気に含有されている場合は,全反応はさらに複雑になって収率の低 下も一層大きなものになる。

図2.9 水分含有酸素中の粒子密度変化(池部ほか,1989)

電極ガラス表面抵抗の減少も放電状態に影響を与えて収率を低下させるが, 微量水分については反応の影響の方が大きい³¹⁾。

2・1・7 放電式オゾナイザのエネルギー収率

オゾナイザのエネルギー収率を考える場合,放電電力のみを考える場合 と、システムとして考える場合があるが、ここでは前者について検討する。 一般にとられているオゾン収率の理論値1,200 g /kwh は、オゾン生成熱 Δ H = 247-105 = 142 kJ/mol から計算された値である。この理論値からオゾン 収率を計算すると、実際のオゾナイザは数%の効率でしかない。

$$O_2 / 2 = O - 247 \,\text{kJ}$$

 $O + O_2 = O_3 + 105 \,\text{kJ}^{-1}$

もし、上式の247kJが必要エネルギーとすれば、690g/kWhが理論上限と

なる。

酸素原子が放電中のなだれ電子と酸素分子の衡突によって起こると仮定した場合のエネルギー収率は次式となる³²⁾。

 $\eta = (\phi K/P)/q (E/P)N_A$

ここで、 ϕ K は 1 個の電子が 1 cm移動するときの単位時間当たりのオゾン生 成数、q は電子の電荷量、E/Pは換算電界、N_A はアボガドロ数である。こ れに、実測の E/P を入れて最大収率を計算すると、空隙長0.1 cm、1 atm O₂ 中で $\eta = 220 \text{ g/kWh}$ となり、経験的に知られている最大収率に一致する。

電子衡突のエネルギー配分を考慮した収率は次式となる。

$$\eta = 2k_{\rm d}/(qV_{\rm d}E/N)$$

ここで、Vaは電子のドリフト速度である。解離速度定数kaがRocとRoaの 和であるとして上式を計算し、上限を求めると約400g/kWhの値となる。

2・1・8 最高オゾン濃度

すでに述べたように放電の強さを増していくと、最初はそれに比例してオ ゾン濃度が増していくが、ある程度以上になると、放電を強めてもオゾン濃 度が増加しなくなり、定常オゾン濃度となる。図2.10に定常オゾン濃度を 全圧に対して示した³³⁾。定常濃度はほぼ酸素圧の1次に比例して増加してい る。これに対していくつかの機構が検討されたが、まだ明確な説明にいたっ ていない。

2・2 水電解式オゾナイザにおけるオゾン発生³⁴⁾⁻³⁹⁾

水を電解するオゾナイザについてはまだ研究が進んでいないが,これにつ いて概説してみたい。

2・2・1 水の電解

一般に貴金属を電極として,通常の条件で水を電気分解すると,陽極には 1 容の酸素,陰極には 2 容の水素が発生する。

図2.10 定常オゾン濃度と全圧の関係(Sugimitsu ほか, 1984)

水は次のように電離している。

$$H_2 O \rightarrow H^+ + O H^- \tag{1}$$

この溶液に電圧をかけると陰極には H⁺ が, 陽極には OH⁻ イオンが移動する。陰極で H⁺ は電子をもらい水素ガスとなる。

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \tag{2}$$

一方, 陽極の方では OH⁻ イオンが電子を放ち, 次の反応により酸素が発 生する。

$$2OH^{-} \rightarrow H_2O + O_2/2 + 2e^{-}$$
(3)

(1), (3)式の組合せから陽極の反応は,

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^- \tag{4}$$

両極で結局,

$$2H_2O \rightarrow 2H_2 + O_2 \tag{5}$$

となって、2分子の水が分解されたことになる。

実際には純粋の水はほとんど電気を通さないが、硫酸などを溶かした水溶 液に貴金属を電極として電流を流しても、結果的には水が分解したのと同じ 反応が起こる。硫酸は水中で次のように電離する。

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-} \tag{6}$$

この溶液中の電極に電圧をかけると陰極には H⁺ が移動し, 陽極には SO²⁻ イオンが移動する。陰極で H⁺ が電子をもらい水素を発生するのはすでに述 べたとおりである。一方, 陽極の方には OH⁻ や SO²⁻ が移動するが, SO²⁻ は電子を放出しにくく, OH⁻ イオンが電子を放ち, 前述の反応により酸素 が発生する。

2・2・2 水の電解によるオゾンの発生

水を大きな電流密度で電解するときに、陽極に酸素と同時にオゾンが生じ ることは、すでに1886年 McLeod によっても報告されているが、詳細な機 構はまだよくわかっていない。電気化学的には、陽極で次のように水が分解 するためである。

$$3H_2O = O_3 + 6H^+ + 6e^ E^0 = +1.51V$$
 (7)

当然これは、先ほどの酸素発生反応と競争することになる。

$$2H_2O = O_2 + 4H^+ + 4e^ E^0 = +1.23v$$
 (4)

ここで E⁰ は水素電極($2H^++e^-=H_2$ E⁰ = 0V)を基準とした標準電極電 位である。

電極電圧だけからみれば、(4)の酸素発生が優先するが、化学反応の速度 が熱力学だけでは予測しがたいのと同様に、(7)のオゾン発生が優先するこ とが起こっても不思議ではない。

反応としてはまず,電極表面でOH⁻の放電によりOH ラジカルが生成し, これより生じた酸素原子がオゾンを生成する。

$$(OH) + (OH) \rightarrow (O) + H_2O \tag{8}$$

$$(0) + (0) \rightleftharpoons (0_2) \rightarrow 0_2 \tag{9}$$

$$(0) + (0_2) \rightleftharpoons (0_3) \rightarrow 0_3 \tag{10}$$

ここで()は表面吸着物であることを示す。

(7)式を仮定した場合,電流効率 η は理論的に,

$$\eta = \frac{6F \cdot Y}{3600 \cdot 48 \cdot I}$$

$$Y : O_{3} g / h$$

$$I :$$
 a Λ

$$\eta :$$
 a Λ

また1gのオゾン発生に必要な電力は次式となる。

W:電力 W/gO3

<u> </u>	6F•V	F :	ファラデー定数	96,500C/mol
w =	$\eta \bullet 3600 \bullet 48$	V :	電解槽電圧 V	
		$n \cdot$	雷流効率	

2・2・3 電解式オゾナイザの実際例

「1] 硫酸, 燐酸電解液オゾナイザ

硫酸, 燐酸などを電解質とするオゾン製造の研究は最も歴史がある。一般 に電解液には比重1.1~1.4の硫酸, 電極には白金電極, または過酸化鉛で覆 った鉛電極が用いられている。温度の上昇を抑えるために, 電極を中空にし て水を通したり, 直流に交流を重畳するなどの工夫もなされた。直流の電流 密度90 A/cm², 交流の電流密度 3 A/cm²で最も良い結果が得られ, 20%以上 の高濃度のオゾンが得られている。

表2.6にこれまでの代表的な電解オゾン発生実験の例を示した。50%以

電解質	電極	温度℃	電流効率%	備考
40% HClO ₄ +Mg (ClO ₄) ₂	Pt	-53	25.9	Putnam, Moulton, Filmore Clark (1948)
3.25 M H₂SO₄	Pt	-63.5	32.4	Scader, Tobias (1952)
8.5 M H₂SO₄	PbO₂	0	9.5	Foller, Tobias (1982)
7.3 M HBF₄	PbO₂	0	18	
7.3 M HPF6	PbO₂	0	52	
2 M Phosphate (KH2PO4+Na2HPO4)	PbO₂	20	9.9	太田, 貝田, 神谷(1988)

表2.6 電解式オゾン発生実験例

上の電流効率が報告された例もあるが、再現性に問題があり実用されていない。図2.11に陽極材料による生成効率の差異を示した。 β -PbO₂、SnO₂がよい結果を与えている。これらはいずれも酸化物導電性を示す物質であり、 今後の検討が期待される。図2.12に β -PbO₂を電極とした場合の、オゾン 生成に対する電解質陰イオンの影響を示した。PF₆-、BF₄-など、電気陰性 度の高いアニオンほどよい電流効率を示している。

図2.12 オゾン発生電流効率に対する陰イオンの影響(Foller ほか, 1982)

「2]四フッ化ほう酸電解液オゾナイザ

特殊な電解質(四フッ化ほう酸 HBF₄)を用い,空気陰極,ガラス状炭素 陽極を用いる方法で,オゾンが気体として発生するオゾナイザが開発されて いる。原理図を図2.13に示した。ガラス状炭素というのは嵩密度が1.0(多 孔体)~1.5g/cm³,導電率2~3/ Ω m,黒鉛にくらべて密度は1/2,導 電率で約1桁小さい固形炭素である。

米国 OXYTECK 社による実施例では陽極のガラス状炭素は長さ20 cm, 直径2.5 cm,厚さ3 mm,有効面積100 cm²で,高分子樹脂を大気圧不活性ガ ス中で,低速度で分解して製造した熱分解炭素を使用している。内部を-5 ℃から0℃に冷却する。陰極は燃料電池に用いられる電極と同じで,炭素に 親水性を調節するためにテフロンを含侵させたものである。表面にプラチナ 触媒層(Pt 触媒 1 mg/cm²)を設けている。この空気陰極は次のような酸 素還元反応により水を生成するので水素処理の問題がない。

図2.14 HBF4 電解式オゾナイザのオゾン発生効率(Foller ほか, 1984)

- 363 -

徳 山 大 学 論 叢

第 36 号

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \tag{11}$$

48% HBF₄を使用し, 10°C, 400 mA/cm²で運転したときに35 vol%のオゾン が発生し, このときの電流効率は約35%に達すると報告されている。図 2.14にこの結果を示した。

[3] 固体高分子電解質膜(SPE) 式オゾナイザ

わが国で市販されている電解質オゾナイザは、いまのところすべてこのタ イプである。液体の電解液が無く、かわりに高分子固体電解質膜が多孔質の 陽極 PbO²に接している。図 2.15に原理図、図 2.16に実際のオゾン発生セ ルの例を示した。

オゾン発生の機構は次のように説明される。陽極では酸素と同時に,次式 によってオゾンと H⁺ イオンが生成する。

図2.15 SPE 式オゾン発生器の原理図

- 364 -

図2.16 SPE 式オゾン発生セル(河村, 1991)

$$3H_2O \rightarrow O_3 + 6H^+ + 6e^-$$
 (7)

オゾンは多孔質の陽極を通って水中に出ていき,水素イオンは固体電解質膜 を通って陰極に移動し,水素を生成する。

$$6\mathrm{H}^{+} + 6\mathrm{e}^{-} \rightarrow 3\mathrm{H}_{2} \tag{2}$$

固体電解質膜とは、固体であるにもかかわらずイオン伝導性を示す物質 で、いくつかの種類がある。オゾナイザに用いられているのは、主にフッ素 樹脂系の陽イオン交換膜であるペルフルオロスルホン酸膜(Du Pont 社製 Nafion など)である。図2.17にナフィオンの基本構造を、表2.7 に食塩

$$(\mathbf{F}_{2}\mathbf{CF}_{2})_{n} - \mathbf{CF}_{2}\mathbf{CF} - (\mathbf{O}\mathbf{CF}_{2}\mathbf{CF})_{m} - \mathbf{O}\mathbf{CF}_{2}\mathbf{CF}_{2}\mathbf{SO}_{3}^{-}\mathbf{H} - (\mathbf{CF}_{3}^{-}\mathbf{CF}_{$$

No.	厚/mil	抵抗率/Ωcm
427	7	5.8
417	7	4.2
315	2	5.3
376	1.5	3.9
227	7	6.7
214	7	5.3

表2.7 ナフィオン膜

電解用としてのナフィオン膜の性質を示した。

フッ素樹脂系膜は耐熱性,耐薬品性に優れ,一般には食塩電解用隔膜や燃料電池用隔膜に用いられている。膜の厚さは0.1~0.3mm,比抵抗140~240 Ωcm,イオン交換容量0.7~0.9meq/gで,その大きな特徴は,陽イオンに対して選択透過性を示すことである。

膜に接合される陽極側電極面には PbO₂ 層を設け,給電材料には,白金めっきしたチタン材などが用いられる。運転には,陽極に10⁶ Ω cm以上の純水を供給し,常圧~20kg/cm²,端子電圧 2~3.5V,常温では電流密度 1~2 A/cm²程度で運転される。電流密度が比較的高くとれるのは,極間距離が小さく,電解質と電極間に気泡が存在しないので,オーム損が小さいためである。図 2.18に温度特性を,図 2.19に電解式オゾナイザのオゾン製造システム例を示した。

2・2・4 放電式オゾナイザとの比較

表2.8に国内各社の電解式オゾナイザの仕様例を,また表2.9にわが国 で現在市販されている放電式オゾナイザの仕様例を示した。放電式の場合は より大型設備があるが,ここでは比較のため1kg/h以下の機種に絞って

図2.18 SPE 式オゾン発生セルの温度特性(河村, 1991)

図2.19 電解式オゾン発生器フローチャート(河村, 1991)

徳山大学論叢 第36号

型式	オゾン量 g/h	原料水 ℓ/h	相	毛 v	源 kW	冷却水 ℓ/h	寸 法/m W D H
OZG-0.2 P OZG-0.4 P	0.2 0.4		1 1	100 100	0.08 0.1	0 0	$0.25 \times 0.46 \times 0.30$ $0.25 \times 0.46 \times 0.30$
$\begin{array}{c} {\rm S-600} \\ {\rm S-1000} \\ {\rm MS-1-G} \\ {\rm MS-2-G} \\ {\rm MS-4-G} \\ {\rm MS-5-G} \end{array}$	0.6 1 3 6 18 30	$\begin{array}{c} 0.036\\ 0.06\\ 0.04\\ 0.08\\ 0.24\\ 0.40\\ \end{array}$	1 1 1 1 1 3	100 100 200 200 200	0.09 0.15 0.35 0.70 2.10 3.50	$\begin{array}{c} 0.05 \\ 0.10 \\ 0.30 \\ 0.60 \\ 1.80 \\ 3.00 \end{array}$	$\begin{array}{c} 0.45 \times 0.35 \times 0.35 \\ 0.55 \times 0.40 \times 0.40 \\ 0.50 \times 0.65 \times 0.80 \\ 0.50 \times 0.65 \times 0.80 \\ 0.60 \times 0.85 \times 1.0 \\ 0.70 \times 1.0 \\ \times 1.2 \end{array}$
OM-0.1 OM-2 OM-12 OM-24 OM-60 OM-200 OM-960	$0.1 \\ 2 \\ 12 \\ 24 \\ 60 \\ 200 \\ 960$	0.06 0.10 0.12 0.24 0.60 2.0 9.6	1 1 1 3 3 3	100 100 200 200 200 200 200 200	0.07 0.23 1.3 2.9 7.1 20 97	$\begin{array}{c} 0.01 \\ 0.15 \\ 0.9 \\ 1.8 \\ 4.5 \\ 15 \\ 72 \end{array}$	$\begin{array}{c} 0.35 \times 0.40 \times 0.45 \\ 0.45 \times 0.55 \times 0.60 \\ 0.65 \times 0.60 \times 1.05 \\ 0.90 \times 0.65 \times 1.25 \\ 0.90 \times 0.65 \times 1.25 \\ 1.10 \times 0.90 \times 1.65 \\ 1.10 \times 1.85 \times 1.8 \end{array}$

表2.8 SPE 電解式オゾナイザの仕様例

表2.9 放電式小型オゾナイザ(空気原料)仕様例

型式	オゾン <u>量</u> g/h	空気量 N㎡/h	相	Ē V	源 kW	冷却水 ℓ/h	「幅	ナ 法/r 奥行	n 高
MA-010	1.8	1.2	1	100	0.05	0		211	
SA 100 P	7	1.2	1	100	0.25	0	0.28	0.25	0.19
KA-10	0.6	0.3	1	100	0.05	0	0.1	0.2	0.25
KA-30	3	0.3	1	100	0.2	0	0.4	0.4	0.25
FO-5	5	0.31		200	0.18	18			
FO-40	40	2.50		200	1.54	140			
FO-80	80	5.0		200	2.99	280			
FO-300	300	18.7		200	10.5	1,050			
FO-750	750	47		200	24.3	2,500			
OS-1	0.7	0.09	1	100		6	0.3	0.2	0.55
OS-4	3.3	0.36	1	100		12	0.4	0.5	1.0
OS-20 B	17	0.85	1	200	0.99	180	0.3	0.2	0.55
OS-60B	50	2.5	1	200	1.95	240			
OS-500	420	21		200	12.9	2,160			

- 368 -

いる。

表2.10に電解式オゾナイザと従来の無声放電法との比較を示した。電解

	電解法	放 電 法
原料	水	空気または酸素
原料前処理	脱イオン	除湿・乾燥
オゾン濃度	10-13 vol%	1 - 6 vol%
水への溶解	高	低
不純物	水	金属ダスト、窒 素酸化物など
電 源	低圧・直流	高圧・交流
騒 音	小	大

表2.10 オゾン発生法の比較

方式の利点としては次のようなことが挙げられる。

(1)酸素源や除湿機および除塵フィルターなどの付帯設備なしに,窒素酸化物 や金属ダストを含まない高純度のオゾンが得られるので,精密電子機器の洗 浄水等に利用できる。

(2)電源電圧が低く,放電式のような高電圧を取り扱う必要がないので,機器 コストの低減化がはかれる。

(3)通常の放電式オゾナイザのオゾン発生濃度が数%に対して電解式では15~20%の高濃度オゾンを発生させることができ、その分水への溶解や反応効率が高くなる。

逆に欠点としては,

(1)電流効率が低い(10%程度)

(2) 陽極劣化の心配がある

ことなどである。

耐久性については数万時間以上の実稼動で問題がないといわれるので,今後,発生効率が問題にならない小規模施設,冷却施設,冷却塔,プール,純粋さが必要な工業プロセスなどでの利用が期待される。

第3章 オゾン応用技術の展望

*オゾンはどこに利用されているか/

オゾンの強力な殺菌力,酸化力,さらに分解生成物が酸素で2次公害の恐 れが少ないことなどの利点から,オゾンの利用範囲は年々拡大を続けている。

昭和60~63年3月までの公開特許の中で、オゾンの製造および利用に関す る数は728件であるが、年代別に見ると、昭和60年が130件、61年が189件、 63年は1~8月までに190件と急速に増加している。分野別に見ると、水処 理が最も多く、次いで半導体関係が116件、空気、排気処理関係の58件を上 回っている⁴⁰。第3.1表にオゾン利用分野の具体例を示した。

水	処理	気体処理	その他
用水	<u>廃水</u> 下水処理場	殺菌・脱臭 下水処理場	<u>漂白・酸化</u> 半導体工業
空調用水 発電所 食品加工場	し床処理場 飼育場 染色工場	し永処理場 飼育場 ゴム <u>工</u> 場	レンスト味去 ウェーハー洗浄 印刷・メッキ・染色業
養殖場 水族館 遊浴施設	が し い き 工 場 現 紙 工 場 田 の 町	ー~ ビル空調・病院 自動車車室 冷蔵庫・貯蔵庫	表面処理 繊維 漂白 窒業 カオリン漂白
噴水	ゴルフ場	トイレ・更衣室	芝生殺菌

表3.1 オゾン利用分野

3・1 上水処理への応用41),42)

世界的に見て、オゾンの最も大きな利用分野は上水処理である。飲料水の 処理法には大別して塩素処理法とオゾン処理法がある。1905年フランスのニ ースで用いられて以来、ヨーロッパでは古くからオゾン処理が普及している が、アメリカ、日本では塩素処理が主体となっている。しかし、近年塩素処 理ではトリハロメタンに代表される発ガン性塩素化物の副生が避けられず、 米国環境保護局(EPA)は1987年塩素処理を最小限とするべく飲料水処理

基準の大幅な改訂を行った⁴⁹。当時世界18カ国1,500カ所(フランス 593, スイス 150, ドイツ 136, アメリカ 15, 日本 7)の処理場が稼動していた が, 以来, アメリカ, カナダをはじめ, 急速に拡大し, 現在世界で稼動して いるオゾン利用施設は3,000カ所以上に達する。そしてこれらの施設の95% がここ15年ぐらいに普及したものである⁴⁰。

わが国では源水の水質がよいため、塩素化合物の副生もあまり問題になっ ていない。それでも渇水期のカビ臭や湖沼の藻の臭いに対する苦情から、 1973年尼崎、1974年倉敷、1975年兵庫とオゾン処理施設が年々増え、1976年 には千葉県柏井に処理水量41万㎡/日、オゾン発生量35.0kg/hの世界最大規 模の処理場が完成している。大阪では淀川水系の水質悪化のため、昭和60年 より柴島浄水場において実証プラントをつくり、現在オゾンによる高度処理 水が1部試験的に給水されている。平成4年からはいよいよ実用プラント設 計にはいる予定で、これが完成すれば、118万トン/日処理水の国内最大規模 の処理施設となる。

EPA はトリハロメタンを100 µg/ℓ以下にすることを示している。これ らの基準を満たすためにはオゾン処理の採用が避けられない。またこれまで 大きな障害となっていたコスト面でも処理行程の改良とメンテナンスの単純 さにより、予想以上に経済的であることが明らかになってきており、オゾン 処理施設はさらに増加していくものと考えられる。

3・2 下水, し尿処理における応用⁴⁵⁾

現在,下水処理場におけるオゾンの利用は処理場で発生する悪臭の処理に 重点がおかれ,放流水の消毒はもっぱら塩素によって行われている。しか し,大都市における水需要の増大に伴い,放流水を下流で再び源水として利 用する割合が増加しており,上で述べたと同様の理由でオゾン処理が検討さ れている。

し尿処理施設は現在全国で約1,200ヵ所稼動している。昭和49年にオゾン が処理水の脱色に用いられてから,高度処理技術として普及し,すでに150

徳 山 大 学 論 叢

以上の箇所で導入され,飲料水と同程度の極めて良好な放流水質が得られ, 日本の大型オゾナイザの半数以上がこの分野に使用されている。

3・3 プール用水消毒への応用46)-48)

わが国のプールの総数は昭和60年9月の時点で35.288カ所、その80%が学 校プールで、オゾン利田施設はまだ10%前後にすぎない。プール水の消毒は 現在塩素ガス、次亜塩素酸ナトリウム、さらし粉および塩素化イソシアヌル 酸などによっているが、利用者がもたらすアンモニアと塩素の反応で生成す るクロルアミンが日や鼻の粘膜を刺激するほか、有害な有機塩素化合物が生 成する問題がある。また、その反応により塩素の効力が低下するため、細菌 汚染を除くために必要な塩素は相当に過剰になり、それによる刺激や臭いが 避けられない。さらに、小規模のプールでは塩素量の制御が難しく、

過剰注 入の危険がある。プール用水のオゾン処理はヨーロッパではすでに20年の歴 史があり、西ドイツでは1.000カ所以上のプールにオゾン処理が適用されて いるが、日本やアメリカではまだ少数である。しかし最近アメリカのウィス コンシン州衛生局は1年間のテストの結果,通常0.4mg/ℓの残留塩素の規 定に対しオゾン処理の場合に限り半分の0.2mg/ℓで許可することを決定し た。塩素による建物の腐食が少ないこと、塩素の消費が少ないこと、処理の 制御が容易であること、利用者への好評度などを勘案すればコスト的にも採 算が合うとのことである。わが国でも最近フィットネスクラブ用のプールが 急増している。利用技術の確立にともない、今後のオゾン利用の普及が見込 まれる。

3・4 冷却水消毒への応用49)-51)

米国では最近,最大の水の使用者である発電所の冷却水の殺菌に使う塩素が問題となっている。1,000 MW級の発電所では,原子力でも火力でも蒸気 タービンである以上毎日30×10⁶トンの冷却水を必要とする。水の節約のた め循環利用を考えると,冷却システムの凝縮器は冷却水中の微生物の成長や

無機塩類の付着により汚損し, 伝熱, 流動特性等が劣化する。これを防止す るために通常塩素が用いられているが, この量は1ppmでも1日30トンに もなり, 大量の塩素の輸送, 安全が問題となる。最近は海水の電解による塩 素を利用している施設もあるが, 塩素化合物の副生は避けられない。それの 代替としてオゾンを使用した場合, 0.5 mg/ ℓ 程度のオゾンで有効に汚損が 抑制され, 伝熱面へのスケールの付着も少ないことがわかった。コスト的に は塩素よりやや高いが, 環境への影響が少ないので今後実用化が進むものと 考えられる。

工業用水のオゾン処理についてはすでに多くの検討が行われ実用されてい るが, 圧延ロールの冷却水にオゾンを注入した例が報告されている。冷間圧 延におけるダイレクト式ロール冷却系では微生物の繁殖による管路閉塞のほ かに, 剝離物によるロールかきこみ傷を発生し, これを防止するため塩素注 入が行われてきた。しかし塩素法は薬剤が残留蓄積して, 設備を腐食したり 製品にサビを発生させるなどの問題があった。オゾンをエゼクタにより間欠 注入することでこれらの問題が解決された。

3・5 食品業界における応用^{52),53)}

食品を長期間貯蔵するためには、低温にして自然に発生する酵素による変 質を防ぐとともに、空気中の浮遊微生物など外部からの汚染を防止すること が必要である。このような目的でオゾンは食品の低温貯蔵中の防カビ、殺菌 剤として用いられる。例えば、近海カツオ、マグロ漁船は生鮮魚保蔵に冷海 水浸漬を行っているが、この冷却海水を200-400ppmのオゾン化空気で連 続ばっきすることにより鮮度が飛躍的に向上する。一般の多目的冷蔵運搬船 でも果物、野菜、肉などにいろいろな臭いがつくのを防止するため、オゾン 発生機が標準装備されているが、果物を数ppmのオゾンを含む空気を通気 しながら低温貯蔵したり、オゾン水に0~60分浸漬した後包装すると腐敗が 著しく減少し、また魚の干物や切り餅等の加工食品を数十ppmのオゾンで 処理することで、貯蔵期間を2~4倍に延長できるという報告もある。 徳山大学論叢

第 36 号

3•6 養殖・飼育場におけるオゾン応用^{54),55)}

養鶏,養豚,養魚等における最大の問題は,伝染病の予防である。飲料水 と舎内空気のオゾン処理によりこれを防止し,さらに舎内の消臭にも利用す ることが行われている。虹鱒,鮭,かき等の養殖にも用いられ,これらの場 合オゾン化空気のばっきによって溶存酸素濃度を増す効果もある。ただし, オゾン濃度管理が重要である。魚の養殖についてはヨーロッパでは古くから 用いられているが,最近,わが国やアメリカでも用いられ始めた。イワシの 生餌を要するカッオ釣り漁船では最近オゾン発生装置の設置が標準仕様とな っている。

またオゾンは赤潮により甲殻類に蓄積される毒素の解毒に効果があり、欧 米ではロブスター等の処理槽に用いる海水の消毒に利用されている。

最近蚕飼育室への適用についても検討されている。

モヤシの育成業における大きな問題はモヤシの部分的腐敗であり、これは 高温,高湿度の環境における雑菌の繁殖のためで,散布水のオゾン処理によ りこれらの問題が解決されている。

3・7 農林産資源活用への応用56)

木材,稲などの農林産植物性資源はエネルギー源としてだけでなく食料, 飼料,肥料および工業材料の原料として幅広い活用が可能であり,わが国に おける期待可採量は石油換算で年間約1,000万kℓともいわれる。これらの資 源は通常微生物により発酵させ、メタンやアルコールを生産するとか、タン パク質などの有用物に転換する。しかし通常これらは強固な高分子であるリ グニンで覆われているので、まずこれを分解処理する必要がある。コスト的 にはやや高くなるが、これにオゾンを用いた場合、低分子化合物にまで速や かに分解され、タンパク質の生産やメタンの生産が促進される。このため、 パルプ工業ではパルプの漂白と同時に廃液中のリグニンを有効利用するため のオゾンの利用が検討されている。結果の多様性から適用が遅れているが、 技術が確立されれば大幅なオゾン利用が期待されよう。

3・8 表面処理への応用57),58)

コロナ放電等に直接暴露したプラスチック表面の印刷,接着性が飛躍的に 向上することは古くから知られている。精密電子工業においては,基材の表 面処理や,シリコン基板表面の清浄化にオゾンを使用した場合,他の乾式清 浄化法に比べて照射損傷がないことが認められている。また,LSIの製造プ ロセスにおいて,製品の洗浄に用いる超純水の無菌状態を保持するため,オ ゾン水を利用する試みが行われ,極めて良好な結果が得られている。最近フ レオンなどの含塩素有機化合物がオゾン層に悪影響を与えることから全面禁 止の傾向になってきており,この点でもオゾンによる清浄化は有用であろ う。装飾や電磁シールドを目的としたプラスチックのメッキ工程で,従来は クロム酸による前処理が行われている。クロムは公害面で好ましくないた め,オゾンによる処理を検討した結果,多くの樹脂でオゾンによる代替が可 能であることがわかり,今後この方面でもオゾンの利用が広まると考えられ る。超電導体製造においては基材の酸素付加が重要で,この目的のためにオ ゾン処理が利用されている。

3・9 医療への応用59),60)

ヨーロッパではオゾン療法と称して、オゾンを潰瘍、ガン、ヘルペス、各 種慢性疾患に適用することが行われている。治療としてはともかくウイルス への効果が高いことから、院内感染の予防などの分野での適用が普及してい く可能性がある。

3・10 家庭用機器への応用61,62)

オゾンモニターの納入実績から最近のオゾン適用分野を概観すると,従来 の水処理以外に,家庭用冷蔵庫,エアコン,ランドリー,トイレ,車内脱臭 など,より身近な分野にオゾンが進出しはじめていることがうかがわれる。

幸いオゾンは極めて微量でも,特有の臭いで知覚されるので危険はさほど 大きくないと考えられるが,オゾナイザが普及していく場合には,オゾンそ のものでなくとも,材料との反応によって危険が生ずる可能性もあるので, 十分の検討がなされる必要がある。

3・11 環境保全への応用⁶³⁾

地方自治体などでは、最近環境保全への努力が進められ、汚濁した河川を 清流に戻すために、下水処理水を水路に放流する試みが行われている。通常 の処理水では臭気と色度を完全に除くことが困難である。オゾン注入率1.5 ~2.0 mg/ℓのオゾン処理を併用した結果、東京都の野火止用水、玉川上水、 千川上水において、清流が復活しており、今後の利用拡大が期待される。

参考文献

- 1) 杉光英俊:オゾンの発生メカニズム,第1回オゾンに関するセミナーテ キスト,日本オゾン協会, pp. 101-110 (1991).
- 2) 杉光英俊:世界におけるオゾン研究の動向,化学と工業,Vol. 42, 10, pp. 345-347 (1989).
- 3) P. J. Hay, T. H. Dunning and W. A. Goddard : Configuration Interaction Studies of O_3 and O_3^+ Ground and Excited States, J. Chem. Phys. Vol. 62, No. 10, pp. 3912-3924 (1975).
- 4)藤原元典,渡辺厳一「総合衛生公衆衛生学」,pp. 435-437,南江堂(1978),中山栄基:超高濃度オゾンの取扱い,超高濃度オゾンI,pp. 81
 -110,日本工業技術振興協会(1991).
- 5) 堺孝夫ほか:高気圧低温プラズマリアクタの将来性に関する調査研究, 放電研究, No. 127, pp. 1-146 (1990).
- 6)池部幸一朗,中西邦夫,荒井聡明:オゾナイザにおける放電生成粒子の 進展過程, T. IEE Japan, Vol. 109-A, No. 11, pp. 474-480 (1989).
- 7) J. C. Devins: Mechanism of Ozone Formation in the Silent Electric Discharge, J. Electrochem. Soc., Vol. 103, pp. 460-466 (1956).
- 8) H. Sugimitsu: Discharge Figures of Silent Electric Discharge in an

- Ozonizer, Proc. 7 th Ozone World Congress, pp. 92-97 (1985).
 杉光英俊:無声放電によるオゾン生成における放電管空隙長の影響,電気学会放電研究所資料, ED-73-20, pp. 1-10 (1973).
- 9) H. Sugimitsu and S. Okazaki: Measurement of the Rate of Ozone Formation in an Ozonizer, Journal de chimie physique, Vol. 79 (9), pp. 655-660 (1982).
- K. Schöfield : Critically Evaluated Rate Constants for Gaseous Reactions of Several Electronically Excited Species, J. Phys. Chm. Ref. Data, Vol. 8, No. 3, pp. 723-776 (1979).
- 11) Y. Itikawa, A. Ichimura, K. Onda, K. Satimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi: Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules, J. Phys. Chem. Ref. Date. vol. 19, No. 1, pp. 23-42 (1989).
- 12) A. T. Bell: Concentrations of Atoms and Negative Ions of Oxygen in Drift Tubes and High-Frequency Electric Discharges, Ind. Eng. Chem. Fundam Vol. 10, No. 3, pp. 373-379 (1971).
- 13)田畑則一,田中正明,八木重典:無声放電式オゾナイザの酸素原料オゾン発生特性,電気学会論文誌 B,第97巻2号, pp. 48-54 (1977).
- F. Kaufman and J. R. Kelso : M effect in the Gas-Phase Recombination of O with O₂, J. Chem. Phys. Vol. 46, pp. 4541-4543 (1967).
- 15) C. J. Hochanadel, J. A. Ghormley, and J. W. Boyle: Vibrationally Excited Ozone in the Pulse Radiolysis and Flash Photolysis of Oxygen, J. Chem. Phys. Vol. 48, No. 6, pp. 2416-2420 (1968).
- 16) C. W. von Rosenberg Jr. and D. W. Trainor : Vibrational Excitation of Ozone Formed by Recombination, J. Chem. Phys., Vol. 61, pp. 2442 -2456 (1974).
- 17) J. E. Ramirez, R. K. Bera and R. J. Hanrahan: Formation of Ground State Ozone on Pulse Radiolysis of Oxygen, Radiat. Phys.

Chem. Vol. 23, No. 6, pp. 685-689 (1984).

- 18) J. I. Steinfeld, S. M. Alder-Golden and J. W. Gallagher : Critical Survey of Data on the Spectroscopy and Kinetics of Ozone in the Meso-Sphere and Thermosphere, J. Phys. Chem. Ref. Data, Vol. 16, No. 4 (1987).
- 19) S. W. Benson and A. E. Axworthy: Mechanism of the Gas Phase, Thermal Decomposition of Ozone, J. Chem. Phys., Vol. 26, No. 6, pp. 1718-1726 (1957).
- 20) A. Mathias and H. I. Schiff: Role of Excited Molecules in a Stream of Electrically Discharged Oxygen, J. Chem. Phys., Vol. 40, pp. 3118-3119 (1964).
- 21) B. Eliasson, M. Hirth and U. Kogelschatz: Ozone Synthesis From Oxygen in Dielectric Barrier Discharges, J. Phys. D; Appl. Phys. Vol. 20, pp. 1421-1437 (1987).
- 22) 田畑則一,田中政明,八木重典:無声放電式オゾナイザの酸素原料と比較した空気原料の場合のオゾン発生特性,電気学会論文誌 B,97巻11号, pp. 665-670 (1977); S. Yagi and M. Tanaka: Mechanism of Ozone Formation in Air-fed Ozonizers, J. Phys. D: Appl. Phys., Vol. 12, pp. 1509-1520 (1979).
- W. Lighten : Lifetime Measurement of Metastable States in Molecular Nitrogen, J. Chem. Phys., Vol. 26, No. 2, 306-313 (1957).
- 24) G. Bekefi: Principles of Laser Plasma, A Wiley-Inter Science Publication, pp. 189-191 (1976).
- 25) U. Kogelschatz and B. Eliasson and P. Baessler : Dissociation of O₂ in N₂/O₂ mixtures; J. Phys. B; At. Mol. Phys., Vol. 17, pp. L 797 L 801 (1984).
- 26) 杉光英俊, 岡崎幸子, 鈴木桃太郎:オゾン生成における添加剤の影響, 昭和53年電気四学会連合大会論文集,第2巻, pp. 25-27 (1978).

- 27) H. Sugimitsu, T. Moriwaki and S. Okazaki: Influence of Gas Pressure and Composition on the Rate of Ozone Formation in an Ozonizer, J. Chim. Phys., Vol. 80, No. 9, pp. 681-684 (1983).
- M. Kogoma, H. Okamura, H. Sugimitsu, T. Moriwaki and S. Okazaki: Synthe de l'Ozone par l'Azote Actif ou l'Azote Atomique dans l'Ozoneur a Air, J. Chim. Phys. Vol. 81, No. 7, pp. 513-518 (1984).
- 29) H. Sugimitsu, H. Niwa, T. Moriwaki and S. Okazaki: Influence of SF₆ Gas on Ozone Formation in an Ozonizer, Proc. Jpn. Symp. Plasma Chem. Vol. 1, pp. 339-344 (1988).
- 30) R. Peyrous, B. Held and P. Pignolet: Simulation of the Evolution of Various Gaseous Species Created by an Electronical Impulse in Dry or Humidoxygen or Air, Papers of Technical Meeting on Electrical Discharges, I. E. E. Japan ED-87-63, pp. 95-109 (1987).
- 31) 杉光英俊, 岡崎幸子:オゾナイザ内面における金属蒸着および水分の影響, 放電研究, 第90号, 27-35 (1982).
- 32) H. Sugimitsu, T. Moriwaki and S. Okazaki: Analyse des Caracteristiques d'un Ozoneur Avec un Modele d'Avalanche d'Electrons de Townsend, J. Chim. Phys., Vol. 81, pp. 355-359 (1984).
- 33) H. Sugimitsu, T. Moriwaki and S. Okazaki: Reaction Chimique de Formation de l'Ozone dans l'Ozoneur, J. Chim. Phys., Vol. 81, No. 6, pp. 423-424 (1984).
- 34) H. McLeod : J. Chem. Soc., vol. 49, pp. 591 (1886).
- 35)河村淳一:水から超高濃度オゾンをつくる, pp. 43-62, 超高濃度オゾン, 日本工業振興協会 (1991).
- 36) 水谷淳二:電解による超高濃度オゾンの製造, pp. 63-80, 超高濃度オ ゾン, 日本工業振興協会(1991).
- 37) 徳田耕一:水の電気分解によるオゾンの発生, pp. 1-18, 超高濃度オ ゾン2, 日本工業振興協会(1991).

- 38) カタログ: ㈱笹倉機械製作所,日本電池㈱,ペルメレック電極㈱.
- 39) P. C. Foller and M. L. Goodwin, The Electrochemical Generation of High Concentration Ozone for Small-Scale Applications, OZONE: SCIENCE & ENGINEERING, Vol. 6, pp. 29-36 (1984).

H. P. Klein and S. Stucki : The Production of Ozone by Electrolysis and its Application in High Purity Water System, Proc. 7th Ozone World Congress, pp. 110-115 (1985).

- 40) ダイヤモンド社編集部:最近の特許から,化学と工業, Vol. 42, pp. 468 (1989).
- 41) 出口富雄「上水処理におけるオゾン技術」オゾン水処理研究会(1986).
- 42) 宗宮功(編): オゾン利用水処理技術,公害対策技術同友会(1989).
- 43) R. G. Rice : New EPA drinking water regulations creating explosive interest in ozone in USA, Ozone News, Vol. 16, 2, pp. 12-13 (1989).
- 44)石橋多聞,松本寛朗:第9回オゾン会議報告,オゾンに関するシンポジ
 ウム要旨, IOA ASPAC支部, pp. 1-6 (1989).
- 45)安武重雄:水処理における利用 I,工業用水,No. 344 (1987), pp. 39–
 45;斉藤和夫:水処理における利用 II, *ibid.*, pp. 46-52 (1987);堤 行
 彦:水処理における利用 II, *ibid.*, pp. 53-60 (1987).
- 46) E. W. Mood: Public Health Principles and Problems Associated with the Treatment of Water in Swimming Pools and Spas, Proc. 9th Ozone World Congress, Vol. 2, pp. 382-389 (1989).
- 47) 加藤克之 : オゾンによるプール水の浄化, オゾンに関するシンポジウム 要旨, IOA ASPAC 支部, pp. 7-24 (1989).
- 48) 鎌形一夫:オゾンによるプール水殺菌の実態,第4回オゾン高度利用技術委員会資料,pp. 33-50 (1991).
- 49) M. Oldani, A. Kyas and R. Wellauers: Cooling Water Treatment with Ozone, Proc. 9th Ozone World Congress, Vol. 2, pp. 300-306 (1989).

- 50)海賀信好, 関敏昭, 居安巨太郎:冷却水系におけるオゾン処理, 工業用 水, 第335号, pp. 45-50 (1986).
- 51) T. Ozawa, T. Honda, H. Kitamura and S. Matumoto: Biofouling Control of Cooling Water Line for Cold Roll Mill; by Intermittent Ozonation, Proc. 7th Ozone World Congress, pp. 224-230 (1985).
- 52)内藤茂三:食品保存における利用,工業用水,第344号, pp. 61-70 (1977).
- 53) 桑野貢三:オゾンはこんなに利用されている,冷凍,第61巻, pp. 1147 -1152 (1986).
- 54) P. Sieswerda: A Review of Applications in Public Aquaria, Proc.9th Ozone World Congress, Vol. 2, pp. 246-249 (1989).
- 55) 小沢,四元,佐々木,中山:閉鎖系海水魚飼育におけるオゾン利用の研 究,オゾンに関するシンポジウム要旨, IOA ASPAC支部, pp. 35-46 (1989).
- 56) J. Nakano, A. Ishizu, S. Hosoya, H. Kaneko and Y. Matsumoto: Ozonation of Lignin Related to Wood and Pulping Chemistry, Proc. TAPPI Research and Development Division Conference, pp. 61-70 (1982).
- 57) 平本:紫外線・オゾン併用精密洗浄,オゾン利用の新技術,三ゆう書 房, pp. 167-190 (1986).
- 58) 紳力就子:オゾンと医療(1)(2),造水技術, Vol. 12, 1, pp. 13-15 (1986).
- 59) G. V. Sunnen: Ozone in Medicine Overview and Future Direction, Proc. 9th Ozone World Congress, Vol. 3, pp. 1-16 (1989).
- 60) 荏原実業㈱カタログ(1989).
- 62) S. Masuda: Ceramic Ozonizer Using High Frequency Surface Discharge and its Application, Proc. 9th Ozone World Congress, Vol. 2, pp. 650-664 (1989).
- 63)秋和 博: 第1回オゾンに関するセミナーテキスト, pp. 123-134 (1991).