タイノエに寄生されたマダイにおける新たな2種類の好中球: 症例報告

近藤昌和[†],安本信哉

New Two Neutrophil Types in Red Seabream Pagrus major Infested with Ceratothoa verrucosa: A Case Report

Masakazu Kondo[†] and Shinya Yasumoto

Abstract : New two neutrophil types, sixth (N-6) and seventh type (N-7), were observed in the blood of *Ceratothoa verucosa* (*Cv*)-infested (usual parasitism; N-6 and N-7 from two *Cv*-infested individual, N-7 from one *Cv*-infested individual) red seabream *Pagrus major* with exophthalmos. The bulging eyes contained bubbles. The N-6 and N-7 were observed in the infested fish without or with mouth insufficiency (MI; Mouth closure was incomplete), respectively; the exophthalmos occurred prior to MI ($EP \rightarrow MI$).

Key words : Ceratothoa verrucosa, red seabream, Pagrus major, neutrophil, morphology

緒 言

これまでに著者らは、タイノエCeratothoa verrucosaに寄 生されたマダイPagrus major (寄生魚)の好中球の形態学 的および細胞化学的特徴を報告してきた1-5)。その結果,寄 生魚の好中球は未寄生魚とは異なる特徴を有し、その特徴 は寄生強度や寄生魚に観察される種々の外観異常 (appearance abnormality) によって様々に変化すること が明らかとなった。すなわち、口腔に1または2個体のタイ ノエが寄生し(通常寄生),外観異常[眼球突出exophthalmos や口の閉鎖不全mouth insufficiency (MI)] が起きていな い寄生魚では第1種好中球 (neutrophil-1, N-1) が^{1.2)}, タイ ノエが口腔に多数寄生し(異常寄生), MIが認められる寄 生魚には第2種好中球(N-2)が³⁾,口腔のみならず鰓蓋内 面や鰓葉上などにもタイノエが寄生し(超異常寄生魚), MIとともに眼球が突出した寄生魚 [突出した眼球内(水晶 体と角膜の間)には気泡が認められる]では第3種好中球 (N-3) が観察される⁴。また、MIを示す通常寄生魚(眼球 は突出していない)と、MIの後に眼球突出(眼球内に気 泡形成)を呈した通常寄生魚にはそれぞれ第4種好中球 (N-4) と第5種好中球(N-5)が出現する⁵⁾。以上の5種類の 好中球のうち,眼球突出を示した寄生魚に観察される好中 球はN-3とN-5であるが,両好中球種が認められる寄生魚で は眼球突出に先立ってMIが起こる⁴⁵⁾。

2019年に釣獲された通常寄生魚2尾を個別飼育していた ところ,どちらも眼球突出が先に起こり,次いでMIとなっ た。また,2尾中1尾では眼球に種々の異常が観察された。 血液塗沫標本を観察したところ,MIとなる前後でいずれ の好中球においても特徴が変化していた(塗抹標本上の出 現頻度は未寄生魚の好中球とほとんど変わらなかった)。 また,それらの好中球の特徴は既知のN-1からN-5のいずれ とも異なっていたことから,眼球突出後(MIとなる前) の寄生魚の好中球を第6種好中球(N-6),眼球突出後にMI となった寄生魚の好中球を第7種好中球(N-7)としてここ に報告する。

材料および方法

前報⁵⁰の脚注2)に記した寄生魚2尾(寄生魚Aと寄生魚B) を実験に用いた。両寄生魚は,響灘(親海域は日本海)に

水産大学校生物生産学科 (Department of Applied Aquabiology, National Fisheries University) †別刷り請求先 (corresponding author): kondom@fish-u.ac.jp

面した下関市沿岸(宇賀漁港)で2019年に釣獲された(釣 獲日: 寄生魚A, 7月16日; 寄生魚B, 7月30日)。キナルジン で麻酔し(20 ppm, 1分間), 全長, 尾叉長および体重を測 定したのち、水産大学校の屋内ガラス製水槽に搬入して水 温25℃で個別飼育した。飼育期間中は市販の配合飼料(マ リン3号,林兼産業)を適宜給餌した。寄生魚A(全長 8.7 cm, 尾叉長8.0 cm, 体重 10.1 g) には2個体の, 寄生魚B(全 長7.4 cm, 尾叉長7.0 cm, 体重6.5 g) には1個体のタイノ エが寄生していた。寄生魚Aからは2回,寄生魚Bからは1 回採血し、血液塗抹標本を作製して前報⁵と同様に各種染 色を施した。採血には注射針(21ゲージ;1.5インチ)を装 着した1 ml容プラスチック製注射器に少量のヘパリンNa 水溶液 (1,000 units/ml) を入れて使用した。以下に両寄 生魚に観察された各種異常について記す。前報では供試し た寄生魚の採血時までの外観異常のみを記したが⁵⁾,同時 に行動異常(behavioral abnormality)も記録していたの で合わせてここに記述する。

寄生魚A

2019年8月6日に右眼球が突出し、同時に眼球内には気泡 が観察された。右眼球の突出と眼球内の気泡は2回目の採 血時(10月30日)まで認められた。同年8月15日に左眼球 内にも気泡が観察されたが、8月19日には気泡が小型化し、 翌日には気泡は消失したものの左眼球が突出した。左眼球 の突出は2回目の採血時まで継続したが、眼球内に再度気 泡が形成されることはなかった。9月13日に浮力調節不全 (頭部を斜め下に向けて遊泳または静止したのち, 頭部か ら水面に向かって浮上して背を水面上に出す行動)が観察 された。10月4日に1回目の採血を行い、血液塗抹標本を作 製した(採血時の寄生魚A: 全長11.1 cm, 尾叉長10.0 cm, 体重23.3 g)。採血後も飼育を継続したところ、10月6日に 頭部突出(水面上へ頭部を突出する行動)が観察され、10 月9日にはMIが認められた。10月30日に2回目の採血・血 液塗抹標本作成を行った(この時の寄生魚A: 全長11.3 cm, 尾叉長10.4 cm, 体重24.8 g)。採血後, 寄生魚Aを解 剖し、タイノエをDavidson液で固定した(10日間固定後、 70%エタノール中で保存)。固定後のタイノエ2個体の大き さは、大型個体で体長 13.6 mm, 最大体幅 5.4 mm (第3 胸節),小型個体では体長 9.4 mm,最大体幅 4.0 mm (第 3胸節)であった。なお、小型個体は固定液中で前屈状態 となったので、ガラス片を背面に押し当てて伸展させた状 態で測定した。

寄生魚B

2019年8月28日に、両眼球内に気泡が認められ、同年9月 3日には両眼球の背側の角膜が体外に膨出した(膨出部に は気泡が観察された)。翌9月4日には右眼球角膜の膨出部 が破裂し、気泡は消失した。9月9日に右眼球の腹側に白濁 した球形の水滴様構造が認められ、翌日には右眼球の腹側 に沿って白濁液が貯留した。9月11日には右眼球が突出し たが気泡は形成されていなかった。9月20日に左眼球の中 央に気泡が形成された。9月3日に膨出した左眼球背側の角 膜は9月24日に破裂し、膨出部の気泡とともに中央の気泡 も消失した。採血日(10月30日)まで左眼球の突出は認め られなかった。MIは9月30日に認められ、10月9日には頭 部突出が観察された。10月30日に採血・血液塗抹標本の作 成を行った(この時の寄生魚B: 全長10.5 cm, 尾叉長9.6 cm, 体重20.9 g)。採血後, 寄生魚Bを解剖し, タイノエ を寄生魚Aの場合と同様に固定・保存した。固定されたタ イノエ(1個体)の体長は11.9 mm, 最大体幅は4.5 mm(第 4胸節)であった。なお、採血時まで寄生魚Bには浮力調 節不全は観察されなかった。

近藤・安本(2020)⁵の供試魚における異常

飼育期間中にMIに陥った異常魚A(3尾)と, MIと眼球 突出を呈する異常魚B(2尾)は, 2018年の7月から10月に かけて上述の寄生魚Aおよび寄生魚Bと同様に下関市沿岸 の響灘で釣獲された個体がのちにそれらの外観異常を示し た寄生魚である(いずれもタイノエが1個体寄生)。当初, 複数の寄生魚を同一水槽中で飼育していたため,各異常魚 が釣獲された時期は不明である。

異常魚A

異常魚Aとなる寄生魚3尾(いずれもタイノエが1個体寄 生)は2019年6月2日に屋内ガラス製水槽(水温25.0℃)へ 搬入された。飼育期間中は市販の配合飼料(マリン6号,林 兼産業)を適宜給餌した。異常魚A-1(飼育開始時: 尾叉 長21.3 cm,体重236.5 g)には6月15日にMIが観察され,6 月27日に浮力調節不全と頭部突出が認められた。異常魚 A-2(飼育開始時:尾叉長17.8 cm,体重138.3 g)では6月 13日にMIが認められるとともに,右眼球内中央に気泡が 形成された。6月26日にこの気泡は消失し,翌日,浮力調 節不全と頭部突出が始まった。異常魚A-3(飼育開始時: 尾叉長21.0 cm,体重209.5 g)では6月24日にMIが観察され, 6月27日に浮力調節不全と頭部突出が認められた。いずれ の異常魚Aにおいても採血時(7月6日)までに眼球突出は 起こらなかった。採血時の各異常魚Aの尾叉長と体重を以 下に示す:異常魚A-1:尾叉長21.7 cm,体重228.5 g.異常魚 A-2:尾叉長18.3 cm,体重138.0 g.異常魚A-3:尾叉長21.2 cm,体重182.5 g。いずれの異常魚Aも採血後,タイノエ が寄生した状態で飼育を継続した。

異常魚B

異常魚Bとなる寄生魚(2尾)は、ヒーターを設置して いない屋内ガラス製水槽に搬入され、市販の配合飼料(マ リン6号,林兼産業)を適宜給餌して飼育した。異常魚B-1 となる寄生魚は2018年12月26日に水槽(水温16.5℃)へ搬 入されたが、この時すでにMIが認められた(尾叉長12.6 cm, 体重46.3 g)。2019年1月12日に浮力調節不全と頭部突 出が観察された(水温20.4℃)。眼球突出と眼球内におけ る気泡は同時に認められ、右眼球では2019年1月27日に(水 温20.4℃), 左眼球では3月24日に確認された(水温 21.1℃)。異常魚B-1からの採血は5月25日に行った(採血 時の異常魚B-1: 尾叉長14.0 cm, 体重52.1 g; 取り上げ時の 水温21.0℃)。採血後,異常魚B-1は解剖され,タイノエ(1 個体)は、70%エタノールで固定・保存された。固定した タイノエの体長は18.2 mm, 最大体幅は9.0 mm (第3胸節) であった。異常魚B-2となる寄生魚は3月23日に屋内ガラス 製水槽(水温21.8℃)に搬入されたが(尾叉長16.6 cm, 体重98.8 g), この時点ですでにMIと両眼球の突出が認め られた。また、突出した眼球内には気泡が観察された。搬 入時には浮力調節不全と頭部突出は認められなかったが、 4月4日にこれらの異常行動が同時に観察された(水温 17.6℃)。異常魚B-2からの採血は5月15日に行った(尾叉 長17.1 cm, 体重83.2 g; 水温20.7℃)。異常魚B-2のタイノ エ(1個体)も70%エタノールで固定・保存された。固定 されたタイノエの体長は22.0 mm, 最大体幅は9.9 mm (第 5胸節)であった。なお、異常魚B-2の水槽内には5月14日 にタイノエの後半部(第5胸節以降)の脱皮殻が認められた。

結果および考察

MIとなる前に眼球突出を示した寄生魚Aの好中球(N-6) と、眼球突出後にMIとなった寄生魚Aと寄生魚Bの好中球 (N-7)には2種類の顆粒,すなわちMay-Grünwald・Giemsa 染色によって難染色性を示す顆粒と、顆粒の中心を取り囲 むエオシン好性層(L0)とその周辺の難染色性層(L1) からなる成層顆粒が認められた (Figs. 1A & 1D)。これら の顆粒の構造は、未寄生魚の好中球に観察される2種類の 顆粒(通常型顆粒ordinary granule, oG; 1型, oG1^N; 2型, oG2^N) や⁶⁷, 寄生魚のN-1, N-2, N-3およびN-5に観察され る2種類の異常型顆粒 (extraordinary granule, eoG; 1型, eoG1; 2型, eoG2) およびN-4の通常型顆粒 (oG1^{Cv4}) と異 常型顆粒 (eoG2^{Cv4}) に類似していた¹⁵。N-6の1型顆粒 (oG1^{Cv6}) は未寄生魚のoG1^NとN-4のoG1^{Cv4}に, N-7の1型顆 粒(eoG1^{Cv7}) は寄生魚のN-1, N-2, N-3およびN-5の1型顆 粒に類似していた。しかし、N-6とN-7の2型顆粒(eoG1Cv6 およびeoG2^{Cv7}) は、未寄生魚および寄生魚のN-1からN-5 の2型顆粒とは細胞化学的特徴が異なっていた(Table 1)。 また、N-1に観察される誘導型顆粒(inducible granule, iG) はN-6およびN-7には認められなかった。

N-6の1型顆粒 (oG1^{Cr6}) には各種リソゾーム酵素は認め られず, 顆粒全体がペルオキシダーゼ (PO) およびズダ ン黒B (SBB) 陽性であった。一方, 2型顆粒 (eoG2^{Cr6}) のL0には各種リソゾーム酵素が検出されたが, 陽性部位 はL0内のL0よりも狭い領域 (L0-0) に限定されていた。 また, β-グルクロニダーゼ陽性のL0-0が多数観察された。 eoG2^{Cr6}のL1はPO陽性であったが, '斑'[顕微鏡の焦点を 移動させることで, L0の上方および下方に出現する褐色 の斑 (spot)]は形成されなかった。eoG2^{Cr6}のL1はSBB陽

Fig. 1. Sixth and seventh neutrophil types (N-6 and N-7, respectively) from red seabream infested with *Ceratothoa verrucosa*. A-C, N-6; D & E, N-7. A & D, May-Grünwald·Giemsa; B, Oil red O; C, Sudan III. E, Sudan black B (Note positive L0-0). Two positive patterns are observed in B & C (pattern 1 > pattern 2): Pattern 1, positive L0-0 and negative L1; pattern 2, negative L0 and positive L1). F, scale bar (5 μm) which is adapted to all figures (A-E) in Fig. 1. Counter stain in B, C & E: hematoxylin (Mayer's).

性を示した。本顆粒はオイルレッドO(ORO)およびズダ ンIIIに陽性反応を示し、多くの顆粒ではL0内のL0よりも 狭い領域(L0-0)に限定されていた(Figs. 1B & 1C)。また、 少数の顆粒ではL1が陽性であった(L0は陰性)。SBB、 OROおよびズダンIIIのいずれの染色においても、染色後 の核染色(マイヤーのヘマトキシリン染色)には顆粒は染 まらなかった。また、SBB、OROおよびズダンIII染色前 のホルマリン蒸気固定標本にヘマトキシリン染色した場合 にも顆粒に陽性像は観察されなかった(Table 1)。

N-7の1型顆粒 (eoG1^{Cr7}) にもN-6のoG1^{Cr6}と同様に各種 リソゾーム酵素は認められず, 顆粒全体がPO陽性であっ た。しかし, oG1^{Cr6}とは異なりeoG1^{Cr7}はSBB陰性であった。 eoG2^{Cr7}の細胞化学的特徴の多くはeoG2^{Cr6}のそれに類似し ていた。しかし, eoG2^{Cr7}のSBB染色性はeoG2^{Cr6}とは異なり, eoG2^{Cr6}ではL1が陽性であるのに対してeoG2^{Cr7}のL1は陰性 であり, L0-0が陽性反応を示した (Fig. 1E; Table 1)。

N-7は眼球に種々の異常を示した寄生魚Bにも観察され たことから、気泡を伴う角膜の膨出 (bulge of cornea with bubble), 膨出した角膜の破裂 (rupture of the swollen cornea) および眼球中の白濁液貯留 (storage of white turbid liquid in the eye) は好中球の特徴に影響し ないと考えられる。

N-6とN-7を比較することで,眼球突出後に起こるMIが 好中球に及ぼす影響を推察できる。すなわち,N-6を有す る寄生魚がMIになると,1型顆粒がSBB陰性となり,2型 顆粒のSBB陽性部位がL-1からL0-0に変化すると言える。 しかし,眼球突出前にMIとなった寄生魚の好中球はN4で あり⁵⁾, N-7とはPO染色像における斑形成の有無(N4では 形成されるが, N-7では形成されない),SBB染色性(N-4 では1型顆粒と2型顆粒のL1が陽性であるが,N-7では2型 顆粒のL0-0が陽性),OROとズダンIII染色性(両染色に N-4は陰性,N-7は2型顆粒が陽性)およびOROとズダンIII 染色後のヘマトキシリン染色性(N-4は2型顆粒のL0が陽 性,N-7は陰性)が異なる。同様にMI後に眼球突出となっ た寄生魚のN-5とMI前に眼球が突出した寄生魚のN-6の間 にはSBB染色性,OROとズダンIII染色性およびOROとズ ダンIII染色後のヘマトキシリン染色性に違いが認められ た(Table 1)。これらの結果から,眼球突出とMIが好中 球に及ぼす影響は,これらの外観異常の発生順の違いに よって異なると言える。

前報⁵と本稿では寄生魚の外観異常と好中球の関係を明 らかにしてきたが、寄生魚には種々の行動異常も観察され ている。Fig. 2にこれまでに寄生魚に観察された外観異常 (A) と行動異常 (B) を時系列的に示した。N-1を有する 寄生魚にはタイノエが1または2個体寄生し(通常寄生 usual parasitism, Cv^a),外観異常と行動異常は認められて いない (Fig. 2-①)^{1,2}。この状態をPとする。PにMI (Fig. 20M1)が生じ、タイノエが口腔に多数寄生した寄生魚(異 常寄生unusual parasitism, Cv^b)にはN-2が観察される(異 常行動は認められていない; Fig. 2-②)³。PがMIとなった のちに右眼球が突出し [M2; 眼球内に気泡形成(bubble formation in the eye, M3),次いで左眼球の突出(眼球内

	Origin of neutrophils, type of granules and reaction ^{*4}										
Staining ^{*1-*3}	Fish without <i>C</i> . <i>verrucosa</i> ^{*a}			Fish infested with C. verrucosa							
				First type: Neutrophil-1 (N-1) ^{*b}					Second type: Neutrophil-2 (N-2)*c		
	G1	$G2 (oG2^N)$		G1	G2 ($eoG2^{Cv1}$)		iG ^{Cv1}		G1	G2 ($eoG2^{Cv2}$)	
	$(oG1^N)$	L0	L1	$(\operatorname{eoGI}_{Cv1})$	L0	L1	LO	L1	$(eoG1^{Cv2})$	L0	L1
MGG	С	Е	С	С	Е	С	С	Е	С	Е	С
					(SF:+)			+)			
AcP	—	+	-	—	-	—	_	—	—	+	—
Glu	—	$+^{*5}$	—	—	$+\uparrow$	—	—	_	—	$+^{*5}$	—
Esterases	—	+	—	—	+	_	—	—	—	+	—
PO	+	—	+	+	—	+	+	_	+	—	+
	(SF:+)			(SF:-)					(SF:-)		
SBB	+		+	-		—	—	—	—	—	—
		(SF	:-)	1							
Hem	—	_		—	—	—	—		—	+	—
ORO, S-III	_	_	_	—	_	—	—	_	—	_	_
Hem	_	_	_	—	_	—	—	—	—	+	_

^{*1}MGG, May-Grünwald Giemsa; AcP, acid phosphatase; Glu, β-glucuronidase; NAE, α-naphtyl acetate esterase; NBE, α-naphtyl butyrate esterase; CAE, naphthol AS-D chloroacetate esterase; PO, peroxidase; SBB, Sudan black B; ORO, oil red O; S-III, sudan III; Hem, hematoxylin stain (Mayer's; counter stain).

 $*^{2}$ Esterases: Alpha-naphtyl acetate esterase, α -naphtyl butyrate esterase and naphthol AS-D chloroacetate esterase.

^{*a}Kondo et al. (2017)⁶; ^{*b}Kondo et al. (2017)¹; ^{*c}Kondo et al. (2018)³.

^{*&}lt;sup>3</sup>All types of granules showed negative reaction to other tests [alkaline phosphatase, periodic acid Schiff reaction (PAS), alcian blue (pH1.0, pH2.5), toluidine blue in distilled].

^{*4}G1, series of type 1 granule; G2, series of type 2 granule; iG, inducible granule (category); o, ordinary; eo, extraordinary; L0, layer zero (inner layer); L1, layer 1 (outer layer); C, chromophobic; E, eosinophilic; +, positive; -, negative (non-detection); ↑, increase of positive site; SF, spot formation.
*5A few of L0 were positive

に 気 泡 あ り) と と も に 浮 力 調 節 不 全 (buoyancy dysregulation; B1) と頭部突出 (protruding action of the head above the water surface; B2) が起こり, その後, 鰓蓋内面や鰓葉上などにタイノエが多数寄生した寄生魚 (超異常寄生super-unusual parasitism, Cv^c) にはN-3が認 められる (Fig. 2-③)^{4,*}。MIとなったのちに浮力調節不全 と頭部突出を示したP [Fig. 2-④; 近藤・安本 (2020)⁵およ び本稿の異常魚A-1とA-3]と、MIの後に右眼球内の気泡 形成および気泡消失 (disappearance of bubble in the eye, M4) を経たのち浮力調節不全と頭部突出を示したP [Fig. 2-5; 近藤・安本 (2020)⁵および本稿の異常魚A-2] にはN-4 が、MIとなったのちに浮力調節不全と頭部突出を示し、 その後,右眼球の突出(眼球内に気泡形成),次いで左眼 球が突出(眼球内に気泡あり)したP [Fig. 2-6;近藤・安 本(2020)⁵および本稿の異常魚B-1]にはN-5が観察される。 また, MIと両眼球の突出(両眼球とも気泡形成)がすで に生じていたPが浮力調節不全と頭部突出を示した場合に も N-5が認められる [Fig. 2-⑦; 近藤・安本 (2020)⁵および 本稿の異常魚B-2]。N-6は右眼球突出後(眼球内に気泡形 成), 左眼球内に気泡が生じ、その後, 左眼球内の気泡消 失とともに左眼球が突出し、次いで浮力調節不全が生じた Pに見られ [Fig. 2-⑧;本稿の寄生魚A], このPが頭部突出を

Table 1. Cont. 1

	Origin of neutrophils, type of granules and reaction ^{*4}										
-	Fish infested with C. verrucosa										
Staining ^{*1-*3}	Third type	: Neutrophil-	3 (N-3) ^{*d}	Fourth typ	e: Neutrophil-	-4 (N-4) ^{*e}	Fifth type: Neutrophil-5 (N-5) ^{*e}				
-	G1	G2 ($eoG2^{Cv3}$)		G1	G2 ($eoG2^{Cv4}$)		G1	G2 ($eoG2^{Cv5}$)			
	$(eoG1^{Cv3})$	L0	L1	$(oG1^{Cv4})$	L0	L1	$(eoG1^{Cv5})$	L0	L1		
MGG	С	Е	С	С	Е	С	С	Е	С		
AlP	—	—	—	—	—	—	-	—	—		
AcP	—	$+^{*6}$	—	—	$+^{*6}$	—		$+^{*6}$	—		
Glu	_	$+^{*5, *6}$	_	—	$+\uparrow^{*6}$	_	—	$+\uparrow^{*6}$	_		
Esterases	_	$+^{*6}$	—	—	+'*6	_	—	$+^{*6}$	—		
РО	+	—	+	+	—	+	+	—	+		
	(SF:+)			(SF:+)			(SF:-)				
SBB	—	—	—	+	—	+	-	—	—		
					(SF:	:-)					
Hem	—	+	—	—	—		—	$+^{*6}$	—		
ORO, S-III	—	—	—	—	—	—	—	—	—		
Hem	_	+	_	-	$+^{*6}$		<u> </u>	$+^{*6}$	_		

*1-*5 See Table 1-1.

*⁶Activity was limited in the small central area of L0 (L0-0).
*^dKondo & Yasumoto (2019)⁴; *^e Kondo & Yasumoto (2020)⁵.

Table 1. Cont. 2

	Origin of neutrophils, type of granules and reaction ^{*4}											
	Fish infested with C. verrucosa											
Staining ^{*1-*3}	Sixth	type: Neutrophil-6 (I	N-6) ^{*f}	Seventh type: Neutrophil-7 (N-7)*f								
	$G1(\alpha G1^{Cv6})$	G2 (eo	$G2^{Cv6}$)	G1 (eoG1 ^{Cv7}) -	G2 ($eoG2^{Cv7}$)							
	01(001)	L0	L1		L0	L1						
MGG	С	Е	С	С	Е	С						
AlP	-	-	—	—	_	_						
AcP	—	- +*6				—						
Glu	—	$+\uparrow^{*6}$	—	—	$+\uparrow^{*6}$	—						
Esterases	— + ^{'*6}		—	—	+'*6	—						
PO	+	+ –		+	—	+						
		(SF	:-)		(SF:-)							
SBB	+	—	+	—	$+^{*6}$	—						
		(SF	:-)	1 1 1								
Hem	-		· _	—	—	—						
ORO	-	$(+^{*6}/-)^{*7}$	$(-/+)^{*7}$	—	$(+^{*6}/-)^{*7}$	$(-/+)^{*7}$						
Hem	-		_	—								
Sudan III	—	$(+^{*6}/-)^{*7}$	$(-/+)^{*7}$	—	$(+^{*6}/-)^{*7}$	$(-/+)^{*7}$						
Hem	—			—		· _ ^						

*1-*6See Table 1-1 and Table 1-2.

*7 Two patterns were observed (pattern 1>pattern 2): Pattern 1, positive L0 (L0-0) and negative L1; pattern 2, negative L0 and positive L1 (no SF). *fPresent report.

示したのちMIとなった場合にはN-7が観察され る(Fig. 2-⑨)。また,両眼球内の気泡形成が 最初に起こり,その後,両眼球に気泡を伴う角 膜の膨出(M5),右眼球における膨出した角膜 の破裂(M6),右眼球中の白濁液貯留(M7), 右眼球突出,左眼球の膨出した角膜の破裂と いった外観異常が生じ,さらにMIとなったの ちに頭部突出が起こったPにもN-7が認められ る[Fig. 2-⑩;本稿の寄生魚B]。

Fig. 2から考察できることは少ないが,④と ⑤の比較から,MIを示した通常寄生魚の眼球 内に気泡が形成されても,その気泡が消失した 場合には(眼球は突出しない),気泡が形成さ れない時と同様にN-4が観察される。また,⑥ と⑦から浮力調節不全と頭部突出の発生時期は N-5の出現に影響しないと推察される。さらに, 浮力調節不全の有無はN-7の出現とは無関係と 考えられる(⑨と⑩の比較)。今後,寄生魚の 各種異常,特に行動異常と好中球種との関連を 明らかにしていきたい。

文 献

- 近藤昌和,窪田太貴,前川幸平,安本信哉,高橋幸則: タイノエに寄生されたマダイの好中球顆粒.水大校研 報,65,203-206 (2017) [Kondo M, Kubota T, Maekawa K, Yasumoto S, Takahashi Y: Neutrophil granules of red seabream *Pagrus major* parasitized with *Ceratothoa verrucosa*. J Nat Fish Univ, 65, 203-206 (2017) (in Japanese with English abstract)]
- 近藤昌和、安本信哉、高橋幸則: タイノエに寄生され たマダイの頭腎と脾臓に観察される顆粒球について、 水大校研報、66, 199-201 (2018) [Kondo M, Yasumoto S, Takahashi Y: On the granulocytes observed in head kidney and spleen of red seabream *Pagrus major* parasitized with *Ceratothoa verrucosa. J Nat Fish Univ*, 66, 199-201 (2018) (in Japanese with English abstract)]
- 近藤昌和,安本信哉,高橋幸則:タイノエに寄生され たマダイに観察される第2の好中球.水大校研報,66, 209-214 (2018) [Kondo M, Yasumoto S, Takahashi Y: Second neutrophil type observed in red seabream Pagrus major with parasitized Ceratothoa verrucosa. J

(1) $Pm \rightarrow Cv^a \ominus N-1$ $(Pm \rightarrow Cv^a \equiv P)$ (2) $P \rightarrow A1 \rightarrow Cv^b \ominus N-2$ (3) $P \rightarrow A1 \rightarrow A2$ (R)·A3 (R) $\rightarrow A2$ (L)·A3 (L)·B1·B2 $\rightarrow Cv^c \ominus N-3$ (4) $P \rightarrow A1 \rightarrow B1·B2 \ominus N-4$ (5) $P \rightarrow A1 \rightarrow A3$ (R) $\rightarrow A$ (R) $\rightarrow B1·B2 \ominus N-4$ (6) $P \rightarrow A1 \rightarrow B1·B2 \rightarrow A2$ (R)·A3 (R) $\rightarrow A2$ (L)·A3 (L) $\ominus N-5$ (7) $P \rightarrow [A1, A2 (R \& L), A3 (R \& L)] \rightarrow B1·B2 \ominus N-5$ (8) $P \rightarrow A2$ (R)·A3 (R) $\rightarrow A3$ (L) $\rightarrow A4$ (L)·A2 (L) $\rightarrow B1 \ominus B2 \rightarrow A1 \ominus N-7$ (9) $P \rightarrow A3$ (R & L) $\rightarrow A5$ (R & L) $\rightarrow A6$ (R) $\rightarrow A7$ (R) $\rightarrow A2$ (R) $\rightarrow A6$ (L) $\rightarrow A1 \rightarrow B2 \ominus N-7$

Fig. 2. Relation between neutrophil type (type 1 to type 7, N-1 to N-7) and abnormalities in *Ceratothoa verrucosa* (*Cv*)-infested red seabream (*Pm*). Appearance abnormality (A): A1, mouth insufficiency (MI); A2, exophthalmos; A3, bubble formation in the eye; A4, disappearance of bubble in the eye; A5, bulge of cornea with bubble; A6, rupture of the swollen cornea; A7, storage of white turbid liquid in the eye. Behavioral abnormality (B): B1, buoyancy dysregulation; B2, protruding action of the head above the water surface. Intensity of *Cv*-infestion: *Cv*^a, usual parasitism; *Cv*^b, unusual parasitism; *Cv*^c, superunusual parasitism. →, time's arrow; R, right; L, left. []: The order in which abnormalities happen is unknown due to non-record of date.

Nat Fish Univ, **66**, 209-214 (2018) (in Japanese with English abstract)]

- 近藤昌和,安本信哉: タイノエに寄生されたマダイの 第3の好中球: 症例報告. 水大校研報, 67, 223-229 (2019) [Kondo M, Yasumoto S: Third neutrophil type in red seabream Pagrus major infected with Ceratothoa verrucosa: A case report. J Nat Fish Univ, 67, 223-229 (2019) (in Japanese with English abstract)]
- 5) 近藤昌和, 安本信哉: タイノエに寄生されたマダイに おける新たな好中球型:第4種および第5種好中球. 水 大校研報, 68, 71-77 (2020) [Kondo M, Yasumoto S: New neutrophil yypes in red seabream *Pagrus major* infested with *Ceratothoa verrucosa*: Fourth and fifth neutrophil types. *J Nat Fish Univ*, 68, 71-77 (2020) (in Japanese with English abstract)]
- 6) Kondo M, Yasumoto S, Takahashi Y: Two types of granules in neutrophils from red sea-bream *Pagrus major. J Nat Fish Univ.* 64, 269-271 (2016)
- 7) Kondo M, Yasumoto S, Takahashi Y: Cytochemical characteristics of neutrophil granules from red seabream Pagrus major. J Nat Fish Univ, 65, 141-145 (2017)