ヤツメウナギ類(カワヤツメ,シベリアヤツメ)の好中球の 形態学的および細胞化学的特徴

近藤昌和†, 安本信哉, 松原 創

Morphological and Cytochemical Characteristics of Neutrophils from Lampreys (Arctic Lamprey Lethenteron camtschaticum and Siberian Brook Lamprey L. kessleri)

Masakazu Kondo^{1,†}, Shinya Yasumoto¹ and Hajime Matsubara^{2,3}

Abstract : Two types of stratified (two-layer) granules (type 1, G-1; type 2, G-2) were observed in the neutrophils of lampreys, *Lethenteron camtschaticum* and *L. kessleri*. The G-1 consisted of chromophobic inner layer (L0) and outer layer (L1). On the other hand, the G-2 had chromatophilic L0 [eosinophilic and basophilic (metaazurophilic) in *L. camtschaticum*, basophilic (metaazurophilic) in *L. kessleri*] and chromophobic L1. Both lamprey species had same cytochemical characteristics. The L0 of G-1 showed positive reaction to alkaline phosphatase. Some lysozomal enzymes, such as acid phosphatase, β -glucuronidase, α -naphtyl acetate esterase and naphthol AS-D chloroacetate esterase were detected in the L0 of G-2. The L0 of G-2 was also Sudan black B positive. The neutrophils lacked α -naphtyl butyrate esterase and peroxidase.

Key words : granule, neutrophil, lamprey, morphology, cytochemistry

著者らはこれまでに、魚類の好中球に多条件下 Romanowsky型染色評価法(Multiple Romanowsky-type Stain Valuation, MRSV)を適用し、各種魚類における好 中球顆粒の特徴を報告してきた(近藤ら^{1,2)}を参照)。前報³⁾ では、MRSVを現生の無顎類Agnatha(円口類 Cyclostomata)の一種であるヌタウナギEptatretus burgeri(ヌタウナギ目Myxiniformesヌタウナギ科 Myxinidae)の好中球に適用し、好中球には2種類の顆粒 が存在すること、それらの顆粒はともに2層からなる成層 構造を有することを明らかにした。円口類にはヌタウナギ 類hagfishの他にヤツメウナギ類lamprey(ヤツメウナギ目 Petromyzontiformes)が含まれ,現生種は3科10属47種 [ミナミヤツメ科Geotriidae(1属1種),モルダキア科 Mordaciidae(1属3種),ヤツメウナギ科Petromyzontidae (8属43種)]に分類されている^{*1}。

ヤツメウナギ類の顆粒性白血球(顆粒球)はこれまで に、ヤツメウナギ科カワヤツメ属*Lethenteron*のAmerican brook lamprey *L. appendix*^{4),*2}とカワヤツメArctic lamprey *L. camtschaticum*^{5),*2}, 同科*Lampetra*属のEuropean brook lamprey *L. planeri*^{6,7)}とEuropean river lamprey *L. fluviatilis*⁷⁻¹⁰⁾,

¹水産大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University)

²東京農業大学アクアバイオ学科(Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture)

³現所属: 金沢大学理工研究域生命理工学系(present address: Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University)

[†]別刷り請求先(corresponding author): kondom@fish-u.ac.jp

^{*1} FishBaseによる (previsionally accepted種の2種を含む)。

^{*&}lt;sup>2</sup> Jordan and Speidel (1930)⁴⁾ のLampetra wilderiとFujii (1981)⁵⁾ のLampetra japonicaはそれぞれLethenteron appendixとLethenteron camtschaticumのシノニムである (FishBaseによる)。

同科*Petromyzon* 属のsea lamprey *P. marinus*^{8,11)}, ミナミ ヤツメ科フクロヤツメ属のフクロヤツメpouched lamprey *Geotria australis*¹²⁾ で観察されている。また, *L. planeri*の 幼生 (Ammocoetes) や⁶⁾, *L. fluviatilis*あるいは*L. planeri* の幼生¹³⁾ およびフクロヤツメの幼生でも報告されている¹²⁾。 ヤツメウナギ類の顆粒球の種類数とその名称は, 魚種ある いは研究者によって様々であるが⁴⁻¹²⁾, Rowleyら (1988) はヤツメウナギ類の顆粒球には好中球系の細胞

(neutrophilic/heterophilic granulocyte) が含まれるとし ている¹⁴⁾。しかし、ヤツメウナギ類の好中球顆粒の染色性 については報告によって異なり、カワヤツメの好中球には Giemsa染色によって染色性の異なる2種類の顆粒(染色性 が弱く微細な顆粒と赤紫色の大型顆粒)が観察されている が⁵⁾, *L. fluviatilis* ではWright染色あるいはGiemsa染色し た好中球に薄青紫色(blue-lilac)の顆粒⁹⁾ あるいはMay-Grünwald・Giemsa染色でアズール好性を示す顆粒が認め られている¹⁰⁾。一方, *P. marinus* とフクロヤツメの好中 球顆粒は明瞭な染色性を示さず好中性とされている^{11,12)}。

本研究ではヤツメウナギ科カワヤツメ属のカワヤツメ (回遊性¹⁴⁾)とシベリアヤツメL. kessleri(淡水で一生を 過ごす¹⁴⁾)の好中球の形態学的および細胞化学的特徴を報 告する。

材料および方法

北海道内の河川で採集されたカワヤツメ成魚2尾(体重 約120 g, 全長約40 cm)とシベリアヤツメ成魚6尾(体重 約6 g, 全長約16 cm)をそれぞれ2017年4月および5月に 水産大学校の飼育施設に搬入し,水温10℃で1週間馴致飼 育したのちに実験に供した。飼育水には曝気した水道水を 用い,飼育期間中は無給餌とした。キナルジンで麻酔後, カワヤツメは尾部血管からヘパリンNa水溶液(1,000 units/ml)を少量入れた注射器を用いて採血した。シベリ アヤツメからの採血は,尾部切断によった。流出血液に少 量のヘパリンNa水溶液を添加した。血液塗抹標本の作 製,多条件下Romanowsky型染色評価法(MRSV; Table 1),各種細胞化学染色およびカワヤツメ好中球のzymosan 粒子に対する貪食試験は前報²⁾と同様の方法で行った。な お,貪食試験は10℃で実施した。

結果および考察

いずれのヤツメウナギ類の血液中にも1種類の顆粒球が 観察され (Figs. 1A & 1B), zymosan粒子に対する貪食が 認められた (Fig. 1C)。両種の好中球はともに類円形であ り,細胞質には2種類の顆粒(1型,G-1;2型,G-2)が観察 された (Figs. 1A & 1B, 2)。G-1はMRSVのいずれの染色 条件においても難染色性を示した。一方, G-2の顆粒内に は好染色性(chromatophilic)の芯様構造が観察された。 この芯様構造を顆粒の中心を囲む層(L0)とし、L0を囲 む領域をL1とする。L1はいずれの条件のRomanowsky型 染色標本においても難染色性であった。一方、L0はカワ ヤツメでは染色条件によって赤色、赤紫色あるいは難染色 性であり (Table 2), シベリアヤツメでは赤紫色あるいは 難染色性であった (Table 2)。 両魚種 のG-1には、 Romanowsky型染色標本では識別できないが、各種細胞化 学染色の結果、アルカリ性フォスファターゼ (AIP) 陽性 のLOが観察された(LOの周囲のL1はAlP陰性; Figs. 1D)。 したがって、カワヤツメとシベリアヤツメの好中球はとも に2種類の成層顆粒を有すると言える。なお、G-1のL0と G-2のL0はともに円形から卵円形であったが、前者の方が 大型であった (G1のL0, <0.5 µm; G-2のL0, <0.3 µm)。

AIP以外の細胞化学染色性についても種間に違いはな く、G-2のL0には酸性フォスファターゼ (AcP)、β-グル クロニダーゼ (β-Glu)、α-ナフチルアセテートエステ ラーゼ (α-NAE) およびナフトールAS-Dクロロアセテー トエステラーゼ (CAE) が検出された (Figs. 1E-1H)。ま た、G-2のL0はズダン黒B (SBB) 陽性であった (Fig. II)。α-ナフチルブチレートエステラーゼ (α-NBE) とペ ルオキシダーゼ (PO) は検出されなかった (Table 3)。 好中球には小型で円形または卵円形のperiodic acid Schiff (PAS) 反応陽性粒子が少数観察され、細胞質基質も弱陽 性を示したが、これらの陽性部位はα-アミラーゼ処理に よって完全に消失した (Table 3)。また、トルイジンブ ルー染色では、不定形の陽性小体 (Y小体) が少数認めら れたが、アルシアンブルー、オイルレッドOおよびズダン III染色では陽性所見は観察されなかった。

これまでに, *Lethenteron appendix* には2種の顆粒球 (special granulocyteとeosinophil) が観察されているが⁴⁾,

PN		Condition ^{1,2}	PN		Condition ^{1,2}
1	MG	: DW	42	G	: 1/150 M PB, pH 8.0, 1:20, 15 min
2		: 5 mM PB, pH 5.0	43		: 1/150 M PB, pH 8.0, 1:20, 60 min
3		: 5 mM PB, pH 6.0	44		: 1/150 M PB, pH 8.0, 1:100, 15 min
4		: 5 mM PB, pH 7.0	45		: 1/150 M PB, pH 8.0, 1:100, 60 min
5		: 5 mM PB, pH 8.0	46	MGG	: DW, 1:20, 15 min
6		: 1/15 M PB, pH 5.0	47		: DW, 1:20, 60 min
7		: 1/15 M PB, pH 6.0	48		: DW, 1:100 , 15 min
8		: 1/15 M PB, pH 7.0	49		: DW, 1:100 , 60 min
9		: 1/15 M PB, pH 8.0	50		: 5 mM PB, pH 5.0, 1:20, 15 min
10	G	: DW, 1:20, 15 min	51		: 5 mM PB, pH 5.0, 1:20, 60 min
11		: DW, 1:20, 60 min	52		: 5 mM PB, pH 5.0, 1:100, 15 min
12		: DW, 1:100 , 15 min	53		: 5 mM PB, pH 5.0, 1:100, 60 min
13		: DW, 1:100 , 60 min	54		: 5 mM PB, pH 6.0, 1:20, 15 min
14		: 0.5 mM PB, pH 5.0, 1:20, 15 min	55		: 5 mM PB, pH 6.0, 1:20, 60 min
15		: 0.5 mM PB, pH 5.0, 1:20, 60 min	56		: 5 mM PB, pH 6.0, 1:100 , 15 min
16		: 0.5 mM PB, pH 5.0, 1:100, 15 min	57		: 5 mM PB, pH 6.0, 1:100 , 60 min
17		: 0.5 mM PB, pH 5.0, 1:100, 60 min	58		: 5 mM PB, pH 7.0, 1:20, 15 min
18		: 0.5 mM PB, pH 6.0, 1:20, 15 min	59		: 5 mM PB, pH 7.0, 1:20, 60 min
19		: 0.5 mM PB, pH 6.0, 1:20, 60 min	60		: 5 mM PB, pH 7.0, 1:100, 15 min
20		: 0.5 mM PB, pH 6.0, 1:100, 15 min	61		: 5 mM PB, pH 7.0, 1:100, 60 min
21		: 0.5 mM PB, pH 6.0, 1:100 , 60 min	62		: 5 mM PB, pH 8.0, 1:20, 15 min
22		: 0.5 mM PB, pH 7.0, 1:20, 15 min	63		: 5 mM PB, pH 8.0, 1:20, 60 min
23		: 0.5 mM PB, pH 7.0, 1:20, 60 min	64		: 5 mM PB, pH 8.0, 1:100, 15 min
24		: 0.5 mM PB, pH 7.0, 1:100, 15 min	65		: 5 mM PB, pH 8.0, 1:100, 60 min
25		: 0.5 mM PB, pH 7.0, 1:100, 60 min	66		: 1/15 M PB, pH 5.0, 1:20, 15 min
26		: 0.5 mM PB, pH 8.0, 1:20, 15 min	67		: 1/15 M PB, pH 5.0, 1:20, 60 min
27		: 0.5 mM PB, pH 8.0, 1:20, 60 min	68		: 1/15 M PB, pH 5.0, 1:100, 15 min
28		: 0.5 mM PB, pH 8.0, 1:100, 15 min	69		: 1/15 M PB, pH 5.0, 1:100, 60 min
29		: 0.5 mM PB, pH 8.0, 1:100, 60 min	70		: 1/15 M PB, pH 6.0, 1:20, 15 min
30		: 1/150 M PB, pH 5.0, 1:20, 15 min	71		: 1/15 M PB, pH 6.0, 1:20, 60 min
31		: 1/150 M PB, pH 5.0, 1:20, 60 min	72		: 1/15 M PB, pH 6.0, 1:100, 15 min
32		: 1/150 M PB, pH 5.0, 1:100, 15 min	73		: 1/15 M PB, pH 6.0, 1:100, 60 min
33		: 1/150 M PB, pH 5.0, 1:100, 60 min	74		: 1/15 M PB, pH 7.0, 1:20, 15 min
34		: 1/150 M PB, pH 6.0, 1:20, 15 min	75		: 1/15 M PB, pH 7.0, 1:20, 60 min
35		: 1/150 M PB, pH 6.0, 1:20, 60 min	76		: 1/15 M PB, pH 7.0, 1:100, 15 min
36		: 1/150 M PB, pH 6.0, 1:100, 15 min	77		: 1/15 M PB, pH 7.0, 1:100, 60 min
37		: 1/150 M PB, pH 6.0, 1:100, 60 min	78		: 1/15 M PB, pH 8.0, 1:20, 15 min
38		: 1/150 M PB, pH 7.0, 1:20, 15 min	79		: 1/15 M PB, pH 8.0, 1:20, 60 min
39		: 1/150 M PB, pH 7.0, 1:20, 60 min	80		: 1/15 M PB, pH 8.0, 1:100, 15 min
40		: 1/150 M PB, pH 7.0, 1:100, 15 min	81		: 1/15 M PB, pH 8.0, 1:100, 60 min
41		: 1/150 M PB, pH 7.0, 1:100, 60 min			

Table 1. Staining conditions of multiple Romanowsky-type stain valuation

¹MG, May-Grünwald stain (after fixation and staining for 5 min with MG concentrated-solution, the smear was stained again for 10 min in MG diluted (1:1) with various solution); G, Giemsa stain (after fixation with absolute methanol for 5 min, the smear was air-dried and then stained with Giemsa diluted with various solution); MGG, May-Grünwald-Giemsa stain (after staining with MG stain, the smear was stained with diluted Giemsa solution); DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain. ²Diluent for Giemsa of MGG stain were DW, 0.5 mM PB or 1/150 M PB.

PN, preparation number.

Fig. 1. Neutrophils from lamprey (*Lethenteron camtschaticum*). A, May-Grünwald (PN=2); B, May-Grünwald·Giemsa (PN=60). Note two types of granules, type 1 (G-1) and type 2 (G-2). The G-2 consist of chromatophilic inner layer (L0; arrowheads in A & B) and chromophobic outer layer (L1); C, phagocytosis of zymosan particles (PN=60; *, zymosan particle); D, alkaline phosphatase; E, acid phosphatase; F, β-glucuronidase; G, α-naphtyl acetate esterase; H, naphthol AS-D chloroacetate esterase; I, Sudan black B. Positive reaction: D, L0 of G-1; E-I, L0 of G-2. Counter stain: D, safranine O; E-I, hematoxylin (Mayer). PN, preparation number (SeeTable 1). Bar (5 μm) in A is adapted to other figures (B-I) in Fig. 1.

同属のカワヤツメには1種類の顆粒球(多形核白血球 polymorphonuclear leucocyte, PMN) しか認められてい ない⁵⁾。また, *L. planeri* には2種類 (neutrophilと eosinophil)⁶⁾ あるいは 3種類 (neutrophil, eosinophil, basophil) の顆 粒球が⁷⁷, *L. fluviatilis* には1種 (granulocyte⁹⁾ あるいは azurophil¹⁰⁾) または2種類 (neutrophilと eosinophil) の顆 粒球が観察されている^{7.8)}。さらに, *Petromyzon marinus* の顆粒球は2種類 (neutrophilと eosinophil)⁸⁾ または3種類 (neutrophil, eosinophil, basophil) に¹¹⁾, フクロヤツメ では1種類 (granulocyte) に分類されている¹²⁾。これらの 顆粒球のうち、少なくともカワヤツメのPMN⁵⁾, *L. planeri* のneutrophil^{6.7)}, *L. fluviatilis*のneutrophil^{7.8)}, granulocyte⁹⁾ およびazurophil¹⁰⁾ ならびに*P. marinus* の neutrophil^{8.11)} はいずれも好中球であると考えられている¹⁴⁾ (Rowleyら (1988)¹⁴⁾ には*L. appendix*とフクロヤツメの 顆粒球に関する報告^{4.12)} は引用されていない)。しかし, 各種ヤツメウナギ類の好中球の染色性(特に顆粒の染色 性) は様々であり, *L. appendix* のspecial granulocyte [*L. appendix*にはspecial granulocyte をeosinophilが観察され ていることから, special granulocyteが好中球に相当する

PN ¹	Species and	color ² of L0	PN^1	Species and	d color ² of L0	DN1	Species and color ² of L0	
	Lc	Lk		Lc	Lk	PN	Lc	Lk
1	R	_	28	Р	_	55	Р	Р
2	R	—	29	Р	Р	56	_	—
3	R	—	30	Р	—	57	Р	Р
4	R	—	31	Р	Р	58	Р	Р
5	—	—	32	—	—	59	Р	Р
6	R	_	33	_	_	60	Р	Р
7	R	—	34	Р	—	61	Р	Р
8	—	—	35	Р	Р	62	Р	Р
9	—	_	36	_	_	63	Р	Р
10	Р	Р	37	Р	Р	64	Р	Р
11	Р	Р	38	Р	Р	65	Р	Р
12	Р	—	39	Р	Р	66	Р	—
13	Р	Р	40	Р	_	67	Р	_
14	Р	Р	41	Р	_	68	Р	_
15	Р	Р	42	Р	Р	69	Р	_
16	_	_	43	Р	Р	70	Р	_
17	Р	Р	44	Р	_	71	Р	_
18	Р	Р	45	Р	_	72	Р	—
19	Р	Р	46	Р	—	73	Р	—
20	Р	_	47	Р	_	74	Р	Р
21	Р	Р	48	Р	—	75	Р	Р
22	Р	Р	49	Р	—	76	Р	Р
23	Р	Р	50	Р	—	77	Р	Р
24	Р	—	51	Р	—	78	Р	Р
25	Р	Р	52	—	—	79	Р	Р
26	Р	Р	53	Р	—	80	Р	Р
27	Р	Р	54	Р	Р	81	Р	Р

Table 2. Summary of multiple Romanowsky-type stain characteristics of L0 of G-2 in neutrophils from two species of lampreys [*Lethenteron camtschaticum* (*Lc*) and *L. kessleri* (*Lk*)]

¹PN, preparation number (See Table 1).

²R, red; P, purple; -, not stained.

 Table 3.
 Summary of reactions of neutrophils from two species of lampreys [Lethenteron camtschaticum (Lc) and L. kessleri (Lk)] to cytochemical tests

Test	Positive site (shape, number and positive site)
Periodic acid Schiff reaction (PAS)	G (round or oval, many); H
PAS after digestion with α-amylase	_
Alcian blue (pH1.0)	_
Alcian blue (pH2.5)	_
Toluidine blue in distilled water	G (amorphous, a few, eq Yb); N
Sudan black B	G (round or oval, many, eq L0 of G-2)
SudanIII	_
Oil red O	-
Alkaline phosphatase	G (round or oval, many, eq L0 of G-1)
Acid phosphatase	G (round or oval, many, eq L0 of G-2)
β-Glucronidase	G (round or oval, some, eq L0 of G-2)
α-Naphtyl acetate esterase	G (round or oval, many, eq L0 of G-2)
α-Naphtyl butyrate esterase	_
Naphthol AS-D chloroacetate esterase	G (round or oval, many, eq L0 of G-2)
Peroxidase	_

G, granular ; H, hyaloplasm ; N, nucleus ; Yb, Yasumoto body; -, not detected; G-1, neutrophil granule type 1 with two-layer structure (chromophobic L0 and L1); G-2, neutrophil granule type 2 with two-layer structure (chromatophilic L0 and chromophobic L1); eq, equivalent to.

と考えられる]の顆粒はWright染色によって塩基好性 (basophily)を示すとされている⁴⁾。しかし, Jordan (1930)⁴⁾の図 [fig. 62 (着色されたスケッチ)]では顆粒 は着色されておらず,細胞質基質が弱塩基好性を示してい ることから,顆粒は染色されないと考えられる [一般に明 瞭な好酸性あるいは好塩基性を示さない場合,好中性 (neutrophilic)と呼ばれるが,実際には染色されていな いので,本報告では難染色性chromophobicと呼ぶ]。一 方,カワヤツメの好中球にはGiemsa染色によって染色性 の異なる2種類の顆粒が観察されているが(染色性が弱く 微細な顆粒と赤紫色の顆粒)⁵⁾, Fujii (1981)⁵⁾の染色像

[fig. 2 (白黒写真)] には難染色性顆粒が見られる。 Lampetra fluviatilis の好中球顆粒は、Wright染色あるい はGiemsa染色によって薄青紫色 (blue-lilac)⁹⁾ あるいは Mav-Grünwald・Giemsa染色でアズール好性を示すとされ ている¹⁰⁾。Kelényi and Larse (1976)¹⁰⁾ にはアズール好性 顆粒の色調は記述されていないが、一般にアズール色素を 含む染色液(Wright染色やGiemsa染色)によって紫色を 呈する顆粒では(青紫色か赤紫色かは問わない)、アズー ル色素が異調染色性(メタクロマジー)を示したと考え、 アズール顆粒と呼ぶ。したがって、L. fluviatilis のアズー ル好性顆粒は紫色であると考えられる。しかし, Page and Rowley (1983)⁹⁾の染色像 (figs. 1 & 2) とKelényi and Larse (1976)¹⁰⁾ の染色像 (fig. 3) には染色されてい ない顆粒が認められる。さらに、P. marinus とフクロヤ ツメの好中球顆粒は明瞭な染色性を示さず好中性(=難染 色性) である^{11,12)}。本研究の結果,カワヤツメとシベリア ヤツメの好中球には2種類の顆粒(G-1とG-2)が存在し, G-1は難染色性あり、G-2の芯様構造(L0)は染色条件に よって赤色(カワヤツメ)や赤紫色(カワヤツメとシベリ アヤツメ)を示すことが明らかとなった。このことから、 Fujii (1981)⁵⁾ がカワヤツメの好中球に観察した赤紫色の 顆粒と, Fujii (1981)⁵⁾のfig. 2に認められる難染色性顆粒 はそれぞれ本研究のG-2のL0とG-1に相当すると考えられ る。同様にL. fluviatilis の薄青紫色顆粒⁹⁾ やアズール好性 顆粒¹⁰⁾はG-2のL0であり,L.fluviatilisの好中球の染色像 に見られる難染色性顆粒はG-1であると思われる。G-2の L0は条件によっては染色されなかった(Table 2)。した がって、G-2のL0が難染色性を示す場合には、G-1とG-2を 区別できない。このことから, L. appendix のspecial granulocyte, P. marinus およびフクロヤツメの難染色性顆 粒は、L0が染色されていないG-2と G-1の両方に相当する

と言える。Fujii (1981)⁵⁾ がカワヤツメの好中球に観察した染色性が弱く微細な顆粒とは、顆粒間の細胞質基質が粒子状に見えたのではないかと推察される。

カワヤツメ, L. fluviatilisおよびP. marinusの好中球顆 粒には電子顕微鏡によって芯様の構造が観察されてい る^{5,8-10)}。これら魚種の芯様構造は本研究のG-1およびG-2そ れぞれのL0に相当すると考えられる。

ヌタウナギの好中球にも2種類の成層顆粒が観察されて おり、難染色性のL0と好染色性のL1からなるG-1と、好染 色性のL0と難染色性のL1からなるG-2に分類されている (Fig. 2)³⁾。また, G-1のL0はG-2のL0よりも大きい³⁾。本 研究におけるヤツメウナギ類の好中球顆粒の分類には、前 述のヌタウナギ好中球の顆粒の特徴を反映させた(G-1の L0がヌタウナギでは好染色性、ヤツメウナギ類では難染 色性である点を除く: Fig. 2)。ヤツメウナギ類のG-2のL0 は、カワヤツメでは赤色または赤紫色を、シベリアヤツメ では赤紫色を呈した(Table 2)。カワヤツメのG-2のLOが 赤色を示すのは、May-Grünwald染色におけるいくつかの 条件においてである。May-Grünwald液(原液)はエオシ ン(酸性色素)とメチレンブルー(塩基性色素)が結合し たエオシン酸メチレンブルーをメタノールに溶解したもの である。染色時に緩衝液等で原液を希釈することでエオシ ンとメチレンブルーが解離する。したがって、カワヤツメ のG-2のL0の赤色はエオシンによるものである。カワヤツ メとシベリアヤツメのG-2のL0は, Giemsa染色および May-Grünwald・Giemsa染色のいくつかの条件下において 赤紫色を示した (Table 2)。Giemsa原液は使用時に緩衝 液等で希釈されるが、希釈後の染色液中にはエオシン、メ チレンブルーおよびアズールB(塩基性色素)がイオン化 した状態で存在する。メチレンブルーとアズールBは溶液 中で青色であるが、これらの塩基性色素が被染色物に結合 した時に、本来の色素の色を示す場合に正調染色性(オル ソクロマジー)を、紫色を呈する場合には異調染色性を示 したとされる。カワヤツメとシベリアヤツメのG-2のLOは May-Grünwald染色によって青色を示さないことから、メ チレンブルーには染色されないと推察される。また、赤紫 色のL0はMay-Grünwald染色標本には観察されず、 Giemsa染色標本およびMay-Grünwald・Giemsa染色標本の いくつかの条件下において認められることから、G-2のL0 の赤紫色はGiemsa染色液中のアズールBが異調染色性を示 したことによると考えられる。また、カワヤツメ好中球の May-Grünwald・Giemsa染色標本のうち、G-2のL0が赤色に

染色される条件のMay-Grünwald染色後に Giemsa染色を 施した場合には、Giemsa染色時間が短い(15分間)とL0 が染色されず、染色時間が長い(60分間)場合に赤紫色を 呈することがあった(Table 2のPN52と53, PN56と57)。 このことは、May-Grünwald染色時にL0に結合したエオシ ンが、Giemsa染色時にL0から解離することを示唆してい る。カワヤツメのG-2のL0はエオシンに結合するとともに アズールBにも結合すると考えられることから、両染性 (amphophilic) であるとも言える。ヌタウナギのG-1のL1 はPN51の条件のMay-Grünwald・Giemsa染色標本でのみ赤 紫色に染色され、G-2のL0もPN51では赤紫色を、他の条件 では淡青色を示す。また、G-2のL0はMay-Grünwald染色 によっても淡青色を呈することから、ヌタウナギのG-1の L1もアズールBによって赤紫色(異調染色性)を示し、 G-2のL0はメチレンブルーで青色(正調染色性)に、ア ズールBによって赤紫色(異調染色性)に染まると推察さ れる (Fig. 2)。

カワヤツメとシベリアヤツメの好中球にはAIP, AcP, β-Glu, α-NAE, CAEが検出され, SBB陽性であった。 AIPとAcPはL. planeri⁶⁾, L. fluviatilis^{9,10)} およびフクロヤ ツメ¹²⁾にも検出されている。しかし、β-Gluとα-NAE活性

Fig. 2. Comparison of two types of neutrophil granules from hagfish *Eptatretus burgeri*³⁾ and lampreys [*Lethenteron camtschaticum* (*Lc*) and *L. kessleri* (*Lk*)]. G-1, type 1; G-2, type 2; L0, layer 0 (inner layer); L1, layer 1 (outer layer). □, chromophobic; ■, chromatophilic [hagfish: L1 of G-1, metacqurcephilic [nurple): L0 of G-2 metaazurophilic (purple); L0 of G-2, orthomethylenophilic (blue) and metaazurophilic (purple). lamprey: L0 of G-2, eosinophilic (red; Lc) and metaazurophilic (purple; Lc and Lk). L0 of G-2 of Lc is amphophilic.

	Species ³ , type of granules and reaction ⁴								
Statinin - 12	Hagfish ^a				Lamprey				
Staining",2	G-1		G-2		G-1		G-2		
	L0	L1	L0	L1	L0	L1	L0	L1	
AlP	_	—	—	-	+	—	_	_	
AcP	_	—	—	-	_	—	+	_	
β-Glu	_	_	_	-	_	_	+	_	
α-NAE	_	_	_	_	_	_	+	_	
α-NBE	+	_	_	-	_	_	_	_	
CAE	_	_	_	-	_	_	+	_	
РО	_	_	_	_	_	_	+	_	
SBB	_	_	_	-	_	_	+	_	

Table 4. Comparison of reactions of neutrophil granules from hagfish and lampreys to cytochemical tests

¹AlP, alkaline phosphatase; AcP, acid phosphatase; β-Glu, β-glucuronidase; α-NAE, α-naphtyl acetate esterase; α-NBE, α-naphtyl butyrate esterase; CAE, naphthol AS-D chloroacetate esterase; PO, peroxidase; SBB, Sudan black B. ²All types of granules showed negative reaction to other tests [periodic acid Schiff reaction, alcian blue (pH1.0, pH2.5),

toluidine blue in distilled, oil red O, Sudan III].

³hagfish, Eptatretus burgeri; lamprey, Lethenteron camtschaticum and L. kessleri.

⁴G-1, neutrophil granule type 1; G-2, neutrophil granule type 2; L0, layer 0 (inner layer); L1, layer 1 (outer layer); +, positive; –, negative (non-detection). ^aKondo and Yasumoto (2020)³;

はL. fluviatilisでは認められるものの^{9,10)}、フクロヤツメで は陰性である¹²⁾。逆に、CAEはL. fluviatilisでは陰性^{9,10)}、 フクロヤツメでは陽性である¹²⁾。また、カワヤツメとシベ リアヤツメで陽性であったSBBはL. fluviatilisでは陰性で あり^{9,10)}, カワヤツメとシベリアヤツメで陰性であったPOは L. fluviatilisとフクロヤツメにおいても陰性であるが^{9,10,12)}, L. planeriでは不定的(inconstant)に陽性である⁶⁾。ヌタ ウナギの好中球にはα-NBE活性がG-1のL0に検出されてい る δ^{3} , AIP, AcP, β -Glu, α -NAE, CAEおよびPOは陰 性であり、SBB染色も陰性である(Table 4)。しかし、各 種寄生虫に感染されたヌタウナギでは、好中球の細胞化学 的特徴が変化することが報告されている¹⁵⁾。ヤツメウナギ 類の種間における細胞化学的特徴の違いが、単に魚種が異 なることによるのか、あるいは供試魚に何らかの寄生体が 感染していたことによるのかは明らかではない。本研究に 用いたヤツメウナギ類の外観には異常は認められなかった が、詳細な寄生体検査はしていない。今後、寄生体感染と ヤツメウナギ類の好中球の関連を明らかにしていきたい。

文 献

- 近藤昌和, 安本信哉, 高橋幸則: アミアの顆粒球の形態 学的および細胞化学的特徴. 水大校研報, 64, 196-203 (2016) [Kondo M, Yasumoto S, Takahashi Y: Morphological and cytochemical characteristics of granulocytes from bowfin *Amia calva. J Nat Fish Univ*, 64, 196-203 (2016) (in Japanese with English abstract)]
- 近藤昌和, 立石航平, 平山尋暉, 安本信哉, 高橋幸則: ド チザメ科サメ類(ドチザメ, ホシザメ, シロザメ)の 好中球の形態学的および細胞化学的特徴. 水大校研報, 67, 141-151 (2019) [Kondo M, Tateishi K, Hirayama H, Yasumoto S, Takahashi Y: Morphological and cytochemical characteristics of neutrophils from Triakidae sharks (banded houndshark *Triakis scyllium*, starspotted smooth-hound *Mustelus manazo* and spotless smooth-hound *M. griseus*). *J Nat Fish Univ*, 67, 141-151 (2019) (in Japanese with English abstract)]
- 近藤昌和,安本信哉: ヌタウナギ好中球の2種類の顆粒.
 水大校研報, 68, 93-95 (2020) [Kondo M, Yasumoto S: Two types of granules in neutrophils from the

inshore hagfish *Eptatretus burgeri*. J Nat Fish Univ,68, 93-95 (2020) (in Japanese with English abstract)]

- Jordan HE, Speidel CC: Blood formation in cyclostomes. Am J Anat, 46, 355-391 (1930)
- 5) Fujii T: Antibody-enhanced phagocytosis of lamprey polymorphonuclear leucocytes against sheep erythrocytes. *Cell Tissue Res*, **219**, 41–51 (1981)
- 6) Fey F: Vergleichende hämozytologie niederer Vertebraten III. Granulozyten. *Folia Haematol*, 86, 1-20 (1966)
- Percy LR, Potter IC: Blood cell formation in the River lamprey, *Lampetra fluviatilis*. J Zool, Lond, 178, 319-340 (1976)
- 8) Potter IC, Percy R, Barber DL, Macey DJ: Chapter 32 The morphology, development and physiology of blood cells. *In*: Hardisty MW, Potter IC (ed) The Biology of Lampreys Vol. 4A, Academic Press, London, 233-292 (1982)
- 9) Page M, Rowley AF: A cytochemical, light and electron microscopical study of the leucocytes of the adult river lamprey, *Lampetra fluviatilis* (L. Gray). J Fish Biol, 22, 503-517 (1983)
- Kelényi G, Larsen LO: The haematopoietic supraneural organ of adult, sexually immature river lampreys (*Lampetra fluviatilis* [L.] Gray) with particular reference to azurophil leucocytes. *Acta biol Acad Sci hung*, 27, 45-56 (1976)
- Piavis GW, Hiatt JL: Blood cell lineage in the sea lamprey, *Petromyzon marinus* (Pisces: Petromyzontidae). *Copeia*, 1971 (4), 722–728 (1971)
- 12) Hine PM, Wain JM, Boustead NC: The Leucocyte Enzyme Cytochemistry of Fish. New Zealand Fisheries Research Bulletin No. 28, New Zealand: Ministry of Agriculture and Fisheries, Wellington, 75pp (1987)
- Rowley AF, Page M: Ultrastructural, cytochemical and functional studies on the eosinophilic granulocytes of larval lampreys. *Cell Tissue Res*, 240, 705-709 (1985)
- Rowley AF, Hunt TC, Page M, Mainwaring G: 2 Fish.
 In: Rowley AF, Ratcliffe NA (ed) Vertebrate Blood Cells. Cambridge University Press, Cambridge, 19-

127 (1988)

15) 近藤昌和, 安本信哉: 寄生虫に感染したヌタウナギの
 好中球顆粒. 水大校研報, 68, 83-91 (2020) [Kondo M,
 Yasumoto S: Neutrophil granules of the inshore

hagfish *Eptatretus burgeri* infested with parasites. *J Nat Fish Univ*, **68**, 83-91 (2020) (in Japanese with English abstract)]