カサゴ好中球の形態学的および細胞化学的特徴

近藤昌和†, 安本信哉, 高橋幸則

Morphological and Cytochemical Characteristics of Neutrophil from Marbled Rockfish, Sebastiscus marmoratus

Masakazu Kondo[†], Shinya Yasumoto and Yukinori Takahashi

Abstract : Morphological and cytochemical characteristics of neutrophil in the marbled rockfish, *Sebastiscus marmoratus* were examined by light microscopy. Two types of granules, chromophobic granule(β G) and basophilic granule(γ G) were observed in the neutrophil. Multiple Romanowsky-type stain valuation revealed that γ G was stained light blue with May-Grünwald(MG) and reddish purple with MG-Giemsa, but not stained with Giemsa. These findings indicate that the content(s) of γ G is both orthomethylenophilic and metaazurophilic, and the content(s) of γ G dissolves in methanol(fixative before Giemsa stain) but is fixed with methylene blue eosinate in methanol(MG solution). The β G was negative with Romanowsky-stain but positive with peroxidase stain.

Key words : marbled rockfish, Sebastiscus marmoratus, neutrophil, morphology, cytochemistry

緒 言

著者らはこれまでに,各種魚類の好中球の形態学的およ び細胞化学的特徴を調べ、好中球顆粒の種類は多様である ことを報告した¹⁻²⁵⁾。魚類を含む脊椎動物の原始の系統と されているヌタウナギ類に属するヌタウナギEptatretus burgeriの好中球は好塩基性顆粒 (γ 顆粒)のみを有し¹⁴⁾, 肉鰭綱肺魚亜綱のアフリカハイギョProtopterus annectens では染色条件の違いによって種々の色調を示す汎染色性顆 粒のみが認められている¹⁸⁾。また,条鰭綱腕鰭亜綱の *Polypterus endlicheri*の好中球には2種類のα顆粒とγ顆 粒が存在する¹³⁾。一方, 真骨魚類 (条鰭綱) は好中球顆粒の 種類の違いから4群に大別される。すなわち,好酸性(好エ オシン性) 顆粒 (α顆粒), 難染性顆粒 (β顆粒) およびγ 顆粒の3種類の顆粒が好中球に観察されるI群(アジアア ロワナScleropages formosus, ウナギAnguilla japonica, コ イCyprinus carpio, ナイルティラピアOreochromis niloticus, イサキParapristipoma trilineatum, マアジTrachurus japonicus, ブリSeriola quinqueradiata, カンパチS. dumerili, ヒラマサS. lalandi)^{1-4, 12, 15, 17, 24, 25)}; α顆粒とβ顆粒が認め られる II 群(トラフグ Takifugu rubripes、マダイ Pagrus major)^{9,16)}; β 顆粒のみを有する II 群(アユPlecoglossus altivelis、ノーザンパイクExos lucius、ボラMugil cephalus、 メナダ Chelon haematocheilus、オオクチバスMicropterus salmoides、ブルーギルLepomis macrochirus、スズキ Lateolabrax japonicus、ヒラスズキL. latus、タイリクスズ キL. sp.、メジナ Girella punctata、マハタEpinephelus septemfasciatus、ヒラメParalichthys olivaceus、マコガレ イPleuronectes yokohamae、マツカワ Verasper moseri)^{5-8.} ^{10,11,19-21,23}</sup>、β顆粒とγ顆粒が存在するIV群(アカメLates japonicus)²²⁾ である。

魚類好中球の α 顆粒は 2 種類に大別されており²⁴⁾, May-Grünwald (MG) 染色で染まるが,Giemsa染色では 染色されない α 1 顆粒と,MG染色でもGiemsa染色でも染 まる α 2 顆粒に分類されている²⁴⁾。また, γ 顆粒も 2 種類 に大別されている²⁴⁾:MG染色にもGiemsa染色にも染まる γ 1 顆粒;MG染色では染まらずGiemsa染色で染まる γ 2 顆粒。 ヌタウナギの γ 顆粒は γ 1 顆粒であり²⁴⁾, *P*. *endlicheri*の好中球には α 1 顆粒と α 2 顆粒の両方が存在 し, γ 顆粒は γ 2 顆粒に同定される²⁴⁾。また,真骨魚類の

水産大学校生物生産学科(Department of Applied Aquabiology, National Fisheries University)

[†]別刷り請求先(corresponding author):kondom@fish-u.ac.jp

I 群はα2顆粒とγ1顆粒を有する I -A群(アジアアロ ワナ,ナイルティラピア,マアジ)と、α2顆粒とγ2顆 粒を有する I -B群(ウナギ,コイ,イサキ,ブリ,カン パチ,ヒラマサ)に細分される²⁴⁾。さらに、真骨魚類の II 群ではα1顆粒を有する II -B群(マダイ)とα2顆粒を 持つ II -A群(トラフグ)に細分され²⁴⁾,IV群のアカメの γ顆粒はγ1顆粒である²⁴⁾。

本研究では、魚類における好中球顆粒の多様性を明らか にするために、カサゴSebastiscus marmoratusの好中球の 形態学的および細胞化学的特性を明らかにし、これまでに 報告した各種魚類と比較した。

材料および方法

吉見湾(下関市)で釣獲したカサゴ(体重約80g)を, 水産大学校の飼育施設に搬入し,流水条件下で1週間以上 飼育したのち実験に供した。飼育期間中は,市販の配合飼料(マリン6号,林兼産業)を適宜給餌した。なお,実験 時の水温は20.0±1.0℃であった。

血液塗沫標本の作製,多条件下Romanowsky型染色評価 法(Multiple Romanowsky-type Stain Valuation, MRSV)

(Table 1) および各種細胞化学染色法は近藤・高橋¹⁵⁾ に したがった。

結 果

カサゴの好中球には2種類の顆粒(β顆粒,γ顆粒)と Y小体(安本小体,Yasumoto body (Y-body))が認めら れた(Fig. 1)。γ顆粒の多条件下Romanowsky型染色特性 (Multiple Romanowsky-type Stain Characteristics, MRSC)をTable 2に示す。β顆粒は円形または卵円形で あり(長径0.8 μ m以下),MRSVのいずれの染色条件にお いても明瞭な色調を示さなかった。また,Y小体は種々の 形態(円形,卵円形,桿形,コンマ形,三日月形,紐状) を示し,MRSVのいずれの染色条件においても青色から淡 青色を呈した。種々の形態の核が偏在しており,分葉核も 観察された(二分葉まで)。

γ 顆粒のMRSC

 γ 顆粒は長径0.3 μ m以下の円形または卵円形であった。 γ 顆粒はMay-Grünwald (MG) 染色では淡青色を示した (Fig. 1A)。しかし, Giemsa染色標本には観察され

なかった。また, MG-Giemsa (MGG) 染色によって, 淡 青色または赤紫色を呈した。特に, 希釈液に蒸留水を用い て, Giemsa原液の希釈率を1:20とし, Giemsa染色時間 を60分間とした場合には, 全てのγ顆粒が赤紫色に染色さ れた (Fig. 1B)。

細胞化学的特徴

カサゴ好中球の細胞化学的特徴をTable 3に示す。アル カリ性フォスファターゼ (AlP) と酸性フォスファターゼ (AcP) は円形または卵円形の陽性顆粒として少数観察さ れたが,前者は長径0.8 μm以下であり (Fig. 2A),後者 は長径0.2 μm以下であった (Fig. 2B)。β-グルクロニ ダーゼは検出されなかった。α-ナフチルアセテートエス テラーゼ (α-NAE), α-ナフチルブチレートエステラー ゼ (α-NBE) およびナフトールAS-Dクロロアセテートエ ステラーゼ (NASDCAE) は円形または卵円形の陽性顆 粒として多数観察された (Figs. 2C-2E)。しかし, α -NAE陽性顆粒は長径0.2 μm以下であったのに対して

 (Fig. 2C), α-NBE陽性顆粒とNASDCAE陽性顆粒はと
 もに長径0.3 μm以下であった(Figs. 2D, 2E)。ペルオキ
 シダーゼ(PO)は円形または卵円形の陽性顆粒(長径0.8 μm以下)として多数認められた(Fig. 2F)。核にはPO陽
 性反応は検出されなかった。

円形または卵円形のperiodic acid Schiff反応 (PAS) 陽 性顆粒(長径0.3 μ m以下)が多数観察され、細胞質基質 もPAS弱陽性であった(Fig. 2G)。いずれのPAS陽性部位 も α -アミラーゼ処理によって完全に消失した。アルシアン ブルー染色では陽性部位は観察されなかった。トルイジン ブルー(TB)染色によって、核が青染されるとともに、 種々の形態(円形、卵円形、桿形、コンマ形、三日月形、紐 状)を示す青色の陽性顆粒が少数観察された(Fig. 2H)。 また、円形または卵円形のTB陽性顆粒(長径0.3 μ m以 下)が多数認められた(Fig. 2H)。オイルレッドOおよび ズダン皿染色では陽性部位は観察されなかったが、ズダン ブラックB(SBB)染色によって円形または卵円形の陽性 顆粒(長径0.8 μ m以下)が多数観察された(Fig. 2I)。

考 察

カサゴの好中球にβ顆粒とγ顆粒が観察されたことか ら、カサゴはアカメと同様にIV群に分類される。カサゴの β顆粒およびγ顆粒は円形または卵円形であり、前者は長

魚類の好中球顆粒

PN		Condition ^{1,2}	PN		Condition ^{1,2}
1	MG	: DW	42	G	: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 15 min
2		: 5 mM PB, pH5.0	43		: ¹ / ₁₅₀ M PB, pH8.0, 1:20, 60 min
3		: 5 mM PB, pH6.0	44		: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 15min
4		: 5 mM PB, pH7.0	45		: ¹ / ₁₅₀ M PB, pH8.0, 1:100, 60min
5		: 5 mM PB, pH8.0	46	MGG	: DW, 1:20, 15 min
6		: ¹ / ₁₅ M PB, pH5.0	47		: DW, 1:20, 60 min
7		: ¹ / ₁₅ M PB, pH6.0	48		: DW, 1:100 , 15 min
8		: ¹ / ₁₅ M PB, pH7.0	49		: DW, 1:100 , 60 min
9		: ¹ / ₁₅ M PB, pH8.0	50		: 5 mM PB, pH5.0, 1:20, 15min
10	G	: DW, 1:20, 15 min	51		: 5 mM PB, pH5.0, 1:20, 60min
11		: DW, 1:20, 60 min	52		: 5 mM PB, pH5.0, 1:100, 15 min
12		: DW, 1:100 , 15 min	53		: 5 mM PB, pH5.0, 1:100, 60 min
13		: DW, 1:100 , 60 min	54		: 5 mM PB, pH6.0, 1:20, 15min
14		: 0.5 mM PB, pH5.0, 1:20, 15min	55		: 5 mM PB, pH6.0, 1:20, 60min
15		: 0.5 mM PB, pH5.0, 1:20, 60min	56		: 5 mM PB, pH6.0, 1:100, 15 min
16		: 0.5 mM PB, pH5.0, 1:100, 15 min	57		: 5 mM PB, pH6.0, 1:100, 60 min
17		: 0.5 mM PB, pH5.0, 1:100, 60 min	58		: 5 mM PB, pH7.0, 1:20, 15min
18		: 0.5 mM PB, pH6.0, 1:20, 15min	59		: 5 mM PB, pH7.0, 1:20, 60min
19		: 0.5 mM PB, pH6.0, 1:20, 60min	60		: 5 mM PB, pH7.0, 1:100, 15 min
20		: 0.5 mM PB, pH6.0, 1:100, 15 min	61		: 5 mM PB, pH7.0, 1:100, 60 min
21		: 0.5 mM PB, pH6.0, 1:100, 60 min	62		: 5 mM PB, pH8.0, 1:20, 15min
22		: 0.5 mM PB, pH7.0, 1:20, 15min	63		: 5 mM PB, pH8.0, 1:20, 60min
23		: 0.5 mM PB, pH7.0, 1:20, 60min	64		: 5 mM PB, pH8.0, 1:100, 15 min
24		: 0.5 mM PB, pH7.0, 1:100, 15 min	65		: 5 mM PB, pH8.0, 1:100, 60 min
25		: 0.5 mM PB, pH7.0, 1:100, 60 min	66		: ¹ / ₁₅ M PB, pH5.0, 1:20, 15min
26		: 0.5 mM PB, pH8.0, 1:20, 15min	67		: ¹ / ₁₅ M PB, pH5.0, 1:20, 60min
27		: 0.5 mM PB, pH8.0, 1:20, 60min	68		: ¹ / ₁₅ M PB, pH5.0, 1:100, 15 min
28		: 0.5 mM PB, pH8.0, 1:100, 15 min	69		: ¹ / ₁₅ M PB, pH5.0, 1:100, 60 min
29		: 0.5 mM PB, pH8.0, 1:100, 60 min	70		: ¹ / ₁₅ M PB, pH6.0, 1:20, 15 min
30		: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 15 min	71		: ¹ / ₁₅ M PB, pH6.0, 1:20, 60 min
31		: ¹ / ₁₅₀ M PB, pH5.0, 1:20, 60min	72		: ¹ / ₁₅ M PB, pH6.0, 1:100, 15 min
32		: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 15 min	73		: ¹ / ₁₅ M PB, pH6.0, 1:100, 60 min
33		: ¹ / ₁₅₀ M PB, pH5.0, 1:100, 60 min	74		: ¹ / ₁₅ M PB, pH7.0, 1:20, 15min
34		: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 15min	75		: ¹ / ₁₅ M PB, pH7.0, 1:20, 60min
35		: ¹ / ₁₅₀ M PB, pH6.0, 1:20, 60min	76		: ¹ / ₁₅ M PB, pH7.0, 1:100, 15 min
36		: ¹ / ₁₅₀ M PB, pH6.0, 1:100, 15 min	77		: ¹ / ₁₅ M PB, pH7.0, 1:100, 60 min
37		: ¹ / ₁₅₀ M PB, pH6.0, 1:100, 60 min	78		: ¹ / ₁₅ M PB, pH8.0, 1:20, 15 min
38		: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 15 min	79		: ¹ / ₁₅ M PB, pH8.0, 1:20, 60 min
39		: ¹ / ₁₅₀ M PB, pH7.0, 1:20, 60 min	80		: ¹ / ₁₅ M PB, pH8.0, 1:100, 15min
40		: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 15 min	81		: ¹ / ₁₅ M PB, pH8.0, 1:100, 60min
41		: ¹ / ₁₅₀ M PB, pH7.0, 1:100, 60 min			

Table 1. Staining conditions of multiple Romanowsky-type stain valuation

¹MG, May-Grünwald stain (after fixation and staining for 5 min with MG concentrated-solution, the smear was stained again for 10 min in MG diluted (1:1) with various solution); G, Giemsa stain (after fixation with absolute methanol for 5 min, the smear was air-dried and then stained with Giemsa diluted with various solution); MGG, May-Grünwald • Giemsa stain (after staining with MG stain, the smear was stained with diluted Giemsa solution); DW, distilled water; PB, phosphate buffer; 1:20 and 1:100, dilution ratio (Giemsa:diluent); 15 min and 60 min, time of Giemsa stain.

²Diluent for Giemsa of MGG stain were DW, 0.5 mM PB or $^{1}/_{150}$ M PB.

PN, preparation number.

径0.8 μm以下,後者は0.3 μm以下であった。これら顆粒 の形状および大きさは著者らがこれまでに報告してきた各 種魚類の両顆粒とほぼ同じであった(Table 4)。しかし, カサゴのγ顆粒はGiemsa染色標本には認められず,MG染 色では淡青色を,MG-Giemsa染色では淡青色または赤紫 色を呈した。この染色性は、アカメのγ顆粒とも、著者ら がこれまで報告してきた魚種のγ顆粒とも異なることから (Table 5)、カサゴのγ顆粒をγ3顆粒とすることとす る。すなわち、MG染色では染まるが、Giemsa染色では染

Fig. 1. Neutrophil of marbled rockfish Sebastiscus marmoratus. Multiple Romanowsky-type stain. A, May-Grünwald (PN=2); B, May-Grünwald · Giemsa (PN=47); PN, preparation number (See Table 1). Arrowheads show Y-body. Bars = 5 μm.

まらないγ顆粒をγ3顆粒と定義する。

カサゴのγ顆粒はMG染色によって淡青色を示した。 MG液はエオシン酸メチレンブルーのメタノール飽和溶液 であり、染色時の水溶液中ではエオシンとメチレンブルー (青色) に解離する。このことから、本顆粒は正調メチレ ンブルー好性であると言える。また, MGG染色では, 染 色条件によっては赤紫色を呈した。この色調は, MG染色 液中にはなくGiemsa染色液中に存在するアズールB(青 色)が異調染色性を示したことに起因すると考えられる。 したがって、カサゴのγ顆粒は異調アズールB好性でもあ ると言える。しかし、Giemsa染色標本にはγ顆粒は観察 されなかった。このことは、カサゴのγ顆粒中の正調メチ レンブルー好性や異調アズールB好性を示す成分が, Giemsa染色前に行うメタノール固定中に溶出することを 示唆している。MG染色およびMGG染色時には、メタノー ル溶液であるMG液で固定を行なうことから、MG液中の エオシン酸メチレンブルーによって, γ顆粒の成分が固定 されたと思われる。

細胞化学的特性からカサゴの好中球の各顆粒およびY小体の成分を次のように推定した(Tables 3, 6)。AIP陽性 顆粒は形態学的特徴がβ顆粒に類似するが,陽性顆粒の数 はβ顆粒よりも少ないことから,AIP陽性顆粒の存在部位

PN	Number (color)	PN	Number (color)	PN	Number (color)	PN	Number (color)
1	++ (LB)	22	-	43	-	64	++ (LB)
2	++ (LB)	23	-	44	-	65	++ (LB)
3	++ (LB)	24	-	45	-	66	++ (LB)
4	++ (LB)	25	-	46	$+ \rightarrow + + (LB); - \rightarrow + (RP)$	67	++ (LB)
5	++ (LB)	26	-	47	++ (RP)	68	++ (LB)
6	++ (LB)	27	-	48	$+ \rightarrow + + (LB); - \rightarrow + (RP)$	69	++ (LB)
7	++ (LB)	28	-	49	$+ \rightarrow + + (LB); - \rightarrow + (RP)$	70	++ (LB)
8	++ (LB)	29	-	50	$+ \rightarrow + + (LB); - \rightarrow + (RP)$	71	++ (LB)
9	++ (LB)	30	-	51	+ (LB); + (RP)	72	++ (LB)
10	-	31	-	52	++ (LB)	73	++ (LB)
11	-	32	-	53	++ (LB)	74	++ (LB)
12	-	33	-	54	++ (LB)	75	++ (LB)
13	-	34	-	55	+(LB);+(RP)	76	++ (LB)
14	-	35	-	56	++ (LB)	77	++ (LB)
15	-	36	-	57	++ (LB)	78	++ (LB)
16	-	37	-	58	++ (LB)	79	++ (LB)
17	-	38	-	59	++ (LB)	80	++ (LB)
18	-	39	-	60	++ (LB)	81	++ (LB)
19	-	40	-	61	++ (LB)		
20	-	41	-	62	++ (LB)		
21	-	42	-	63	++ (LB)		

Table 2. Summary of multiple Romanowsky-type staining characteristics of γ granule in the neutrophil of marbled rockfish *Sebastiscus marmoratus*

PN, preparation number (See Table 1); Number, number of γ granules observed in preparation; ++, many; +, some; -, not observed; LB, light blue; RP, reddish purple.

Fig. 2. Cytochemistry of neutrophil in marbled rockfish *Sebastiscus marmoratus*. A, alkaline phosphatase; B, acid phosphatase; C, α -naphtyl acetate esterase; D, α -naphtyl butyrate esterase; E, naphthol AS-D chloroacetate eaterase; F, peroxidase; G, periodic acid Schiff reaction; H, toluidine blue in distilled water; I, sudan black B. Arrowheads show Y-body. Bars = 5 μ m.

Test	Positive site (shape and number)
Periodic acid Schiff reaction (PAS)	Granule (round or oval, many, $\phi \leq 0.3 \mu$ m,); hyaloplasm
PAS after digestion with α -amylase	-
Alcian blue (pH1.0)	-
Alcian blue (pH2.5)	_
Teleiding block (distilled success)	Granule (round or oval, many, $\phi \leq 0.3 \ \mu$ m, equivalent to γ G;
Totulaine blue (distilled water)	amorphous, a few, equivalent to Y-body); N
Sudan black B	Granule (round or oval, many, $\phi \leq 0.8 \mu m$, equivalent to βG)
SudanIII	_
Oil red O	_
Alkaline phosphatase	Granule (round or oval, some, $\phi \leq 0.8 \mu\text{m}$)
Acid phosphatase	Granule (round or oval, a few, $\phi \leq 0.2 \mu \text{m}$)
β-Glucronidase	_
α-Naphtyl acetate esterase	Granule (round or oval, many, $\phi \leq 0.2 \mu \text{m}$)
α-Naphtyl butyrate esterase	Granule (round or oval, many, $\phi \leq 0.3 \mu$ m, equivalent to γ G)
Naphthol AS-D chloroacetate esterase	Granule (round or oval, many, $\phi \leq 0.3 \mu$ m, equivalent to γ G)
Peroxidase	Granule (round or oval, many, $\phi \leq 0.8 \mu$ m, equivalent to β G)

 Table 3.
 Summary of reactions of marbled rockfish Sebastiscus marmoratus neutrophil to cytochemical tests

-, non detection; Y-body, Yasumoto body; β G, β granule; γ G, γ granule.

r:l			Type of	f cytoplasmic gra	nule ^{2,3}		
FISH	α1	α2	β	γ1	γ2	γ3	Р
Eb	—	_	_	r or o (≤ 0.5)	_	_	—
Pa	_	_	_	_	_	_	r or o (0.4-0.5), rod (1.0-1.5)*
Ре	r (0.3), rod (0.8)*	r (0.3)	_	_	r or o (≤ 0.5)	_	_
Sf	_	rod or s (1.0)*	r or o (≤ 0.5)	r or o (≤ 0.3)	_	_	_
Aj	_	r or o (0.3), rod (≤ 1.0)*	r or o (≦0.6)	_	r or o (≤ 0.3)	_	_
Сс	_	r (≦0.3)	r or o (0.5)	_	r or o (≤ 0.4)	_	_
Pla	_	_	r or o (≤ 0.5)	_	_	_	_
El	_	_	r or o (≤ 0.5)	_	_	_	_
Мс	_	_	r or o (≤ 0.8)	_	_	_	_
Ch	_	_	r or o (≤ 0.8)	_	_	_	_
Laj	-	_	r or o (≤ 0.5)	r or o (≤ 0.3)	—	_	_
Ms, Lm	_	_	r or o (0.5-1.0)	_	_	_	_
Lj, Ll, Lsp	_	_	r or o (≤ 1.0)	_	_	_	_
Es	_	_	r or o (≤ 1.0)	_	_	_	_
On	-	r (≦0.3)	r or o (0.5-1.0)	r or o (≤ 0.3)	-	-	-
Pt	_	rod (0.5-1.0)*	r or o (0.5-1.0)	_	r or o (≤ 0.3)	_	_
Tj	_	r or o (≤ 0.3)	r or o (≤ 1.0)	r or o (≤ 0.3)	_	_	_
Sq	_	rod $(0.5-1.0)^*$ r or o (\leq	r or o (≦0.5)	_	r or o (≦0.3)	_	_
Sd	-	0.2), rod (\leq 0.5)*	r or o (≦0.5)	-	r or o (≦0.3)	-	-
Sl	_	0.2), rod (≤ 0.5)*	r or o (≤ 0.5)	-	r or o (≤ 0.3)	-	-
Gp	_	_	r or o (0.5-1.1)	_	_	_	_
Pm	r or o (≤ 0.4)	_	r or o (≤ 0.5)	_	_	_	_
Sm	_	_	r or o (≤ 0.8)	_	_	r or o (≤ 0.3)	_
Py	_	_	r or o (≤ 0.5)	_	_	_	_
Vm	_	_	r or o (≤ 0.5)	_	_	_	_
Ро	-	-	r or o (0.5-1.0)	-	-	-	_
Tr	_	r or o (0.5), rod (≤ 1.5) [*]	r or o (≤ 1.0)	-	-	-	_

 Table 4.
 Comparison of morphological characteristics (shape and diameter (µm)) of neutrophil granules in various fish species

¹Eb, Eptatretus burgeri (hagfish)¹⁴); Pa, Protopterus annectens (African lungfish)¹⁸); Pe, Polypterus endlicheri¹³); Sf, Scleropages formosus (Asian arowana)¹²); Aj, Anguilla japonica (Japanese eel)¹⁵); Cc, Cyprinus carpio (common carp)^{1,2}); Pla, Plecoglossus altivelis (ayu)⁸); El, Exos lucius (northern pike)¹¹); Mc, Mugil cephalus (gray mullet)²⁰); Ch, Chelon haematocheilus (redlip mullet)²¹); Laj, Lates japonicus (Japanese lates)²²); Ms, Micropterus salmoides (large moultebass)⁶); Lm, Lepomis macrochirus (bluegill)⁶); Lj, Lateolabrax japonicus (Japanese seabass)¹⁰); Ll, Lateolabrax latus (seabass)¹⁰); Lsp, Lateolabrax sp. (seabass, TA-I-RI-KU-SU-ZU-KI (Japanese name))¹⁰); Es, Epinephelus septemfasciatus (sevenband grouper)¹⁹); On, Oreochromis niloticus (Nile tilapia)³); Pt, Parapristipoma trilineatum (striped grunt)⁴); Tj, Trachurus japonicus (jack-mackerel)²⁵); Sq, Seriola quinqueradiata (Japanese amberjack)¹⁷); Sd, Seriola dumerili (greater amberjack)²⁵); Sl, Seriola lalandi (yellowtail amberjack)²⁵); Gp, Girella punctata (rudderfish)⁵); Pm, Pagrus major (red sea-bream)¹⁶); Sm, Sebastiscus marmoratus (marbled rockfish, present report); Py, Pleuronectes yokohamae (marbled sole)²³; Vm, Verasper moseri (barfin flounder)²³); Po, Paralichthys olivaceus (Japanese flounder)⁷); Tr, Takifugu rubripes (tiger puffer)⁹).

²α1, α granule type 1; α2, α granule type 2; β, β granule; γ1, γ granule type 1; γ2, γ granule type 2; γ3, γ granule type 3; P, panchromatophilic granule; -, not observed; r, round; o, oval; s, spindle. *Diameter in length. は確定できない。AcP陽性顆粒は β 顆粒および γ 顆粒とは 大きさと数が異なる。 α -NAE陽性顆粒は、 β 顆粒および γ 顆粒とは大きさが異なる。一方、 α -NBE陽性顆粒と NASDCAE陽性顆粒は形態学的特徴および数の類似性か ら γ 顆粒に相当すると考えられる。PO陽性顆粒は円形ま たは卵円形であり、大きさが β 顆粒に類似することから、 PO活性は β 顆粒に存在すると考えられる。PAS陽性顆粒 は β 顆とは大きさが異なる。一方、 γ 顆粒とは形状、大き

			Fish	n, type and	l number	ofγgranu	les observ	ed in eacl	h staining	preparatio	on ¹⁻³		
PN	Eb	Pe	Sf	Aj	Сс	Laj	On	Pt	Tj	Sq	Sd	Sl	Sm
	γ1	γ2	γ1	γ2	γ2	γ1	γ1	γ2	γ1	γ2	γ2	γ2	γ3
1	++	-	-	-	-	++	-	-	++	-	-	-	++
2	++	-	-	-	-	++	-	-	-	-	-	-	++
3	++	-	-	-	-	++	+	-	++	-	-	-	++
4	++	-	-	-	-	++	++	-	++	-	-	-	++
5	++	-	++	-	-	++	++	-	++	-	-	-	++
6	-	-	-	-	-	++	-	-	-	-	-	-	++
7	-	-	-	-	-	++	+	-	-	-	-	-	++
8	-	-	-	-	-	++	++	-	++	-	-	-	++
9	-	-	+	-	-	++	++	-	++	-	-	-	++
10	++	+	++	++	++	++	++	-	++	++	++	++	-
11	++	+	++	++	++	++	++	++	++	++	++	++	-
12	++	-	+	+	+	++	+	+	++	++	++	++	-
13	++	+	+	++	++	++	+	+	++	++	++	++	-
14	++	+	++	+	+	++	+	-	++	++	++	++	-
15	++	+	++	++	++	++	+	+	++	++	++	++	-
16	++	-	+	+	+	++	+	-	++	++	++	++	-
17	++	+	+	+	++	++	+	-	++	++	++	++	-
18	++	+	++	++	++	++	++	-	++	++	++	++	-
19	++	+	++	++	++	++	++	+	++	++	++	++	-
20	++	-	+	+	+	++	+	-	++	++	++	++	-
21	++	+	++	+	++	++	+	-	++	++	++	++	-
22	++	+	++	++	++	++	++	++	++	++	++	++	-
23	++	+	++	++	++	++	++	++	++	++	++	++	-
24	++	-	++	++	++	++	+	++	++	++	++	++	-
25	++	+	++	++	++	++	+	++	++	++	++	++	-
26	++	+	++	++	++	++	++	++	++	++	++	++	-
27	++	+	++	++	++	++	++	++	++	++	++	++	-
28	++	-	++	++	++	++	++	++	++	++	++	++	-
29	++	+	++	++	++	++	++	++	++	++	++	++	-
30	++	+	++	++	++	++	-	-	++	++	++	++	-
31	++	+	++	++	++	++	++	+	++	++	++	++	-
32	++	-	++	+	+	++	-	-	++	++	++	++	-
33	++	+	++	+	++	++	+	-	++	++	++	++	-
34	++	+	++	++	++	++	-	-	++	++	++	++	-
35	++	+	++	++	++	++	+	+	++	++	++	++	-
36	++	-	++	+	+	++	-	-	++	++	++	++	-
37	++	+	++	+	++	++	-	-	++	++	++	++	-
38	++	+	++	++	++	++	++	++	++	++	++	++	-
39	++	+	++	++	++	++	++	++	++	++	++	++	-
40	++	-	++	+	+	++	+	++	++	++	++	++	-
41	1.1	1	1.1	1.1	1.1		1.1			1.1		1.1	

Table 5. Summary of multiple Romanowsky-type staining characteristics of γ granule in fish neutrophils

¹*Eb*, *Eptatretus burgeri* (hagfish)¹⁴; *Pe*, *Polypterus endlicheri*¹³; *Sf*, *Scleropages formosus* (Asian arowana)¹²; *Aj*, *Anguilla japonica* (Japanese eel)¹⁵); *Cc*, *Cyprinus carpio* (common carp)²⁴; *Laj*, *Lates japonicus* (Japanese lates)²²); *On*, *Oreochromis niloticus* (Nile tilapia)²⁴); *Pt*, *Parapristipoma trilineatum* (striped grunt)²⁴); *Tj*, *Trachurus japonicus* (jack-mackerel)²⁵); *Sq*, *Seriola quinqueradiata* (Japanese amberjack)¹⁷); *Sd*, *Seriola dumerili* (greater amberjack)²⁵); *Sl*, *Seriola lalandi* (yellowtail amberjack)²⁵); *Sm*, *Sebastiscus marmoratus* (marbled rockfish, present report).

 $^{2}\gamma$ 1, γ granule type 1; γ 2, γ granule type 2; γ 3, γ granule type 3.

³++, many; +, some; -, not observed.

PN, preparation number (See Table 1).

さおよび数が類似する。しかし、PAS陽性顆粒はα-アミ ラーゼにより完全に消化されることから、グリコーゲンを 主成分とする構造物であると考えられ、β顆粒およびγ顆 粒とは異なると思われる。TB染色によって種々の形態を 示す青色の粗大な陽性部位が観察された。この陽性部位は 形態学的特徴からY小体に相当すると思われる。また、微 細なTB陽性顆粒が観察され、その形態学的特徴はγ顆粒 に類似することから、γ顆粒もTB陽性であると考えられ

Table 5. Cont.

			Fish	n, type and	d number	ofγgranu	les observ	ved in eac	h staining	preparation	on ¹⁻³		
PN	Eb	Pe	Sf	Aj	Сс	Laj	On	Pt	Tj	Sq	Sd	Sl	Sm
	γ1	γ2	γ1	γ2	γ2	γ1	γ1	γ2	γ1	γ2	γ2	γ2	γ3
42	++	+	++	++	++	++	++	++	++	++	++	++	-
43	++	+	++	++	++	++	++	++	++	++	++	++	-
44	++	-	++	++	++	++	++	++	++	++	++	++	-
45	++	+	++	++	++	++	++	++	++	++	++	++	-
46	++	-	+	++	-	++	++	+	++	++	++	++	++
47	++	-	++	++	++	++	++	++	++	++	++	++	++
48	++	-	+	+	-	++	+	+	++	++	++	++	++
49	++	-	+	+	-	++	+	+	++	++	++	++	++
50	++	-	+	+	-	++	-	-	++	++	++	++	++
51	++	-	++	+	++	++	-	+	++	++	++	++	++
52	++	-	+	-	-	++	-	-	++	++	++	++	++
53	++	-	++	-	-	++	-	-	++	++	++	++	++
54	++	-	+	+	-	++	++	-	++	++	++	++	++
55	++	-	++	++	++	++	++	+	++	++	++	++	++
56	++	-	+	+	-	++	+	-	++	++	++	++	++
57	++	-	++	+	+	++	+	-	++	++	++	++	++
58	++	-	++	++	+	++	++	++	++	++	++	++	++
59	++	-	++	++	++	++	++	++	++	++	++	++	++
60	++	-	++	++	+	++	+	++	++	++	++	++	++
61	++	-	++	++	+	++	+	++	++	++	++	++	++
62	++	-	++	++	+	++	++	++	++	++	++	++	++
63	++	-	++	++	++	++	++	++	++	++	++	++	++
64	++	-	++	++	+	++	++	++	++	++	++	++	++
65	++	-	++	++	+	++	++	++	++	++	++	++	++
66	++	-	+	+	-	++	-	-	++	++	++	++	++
67	++	-	+	+	++	++	-	+	++	++	++	++	++
68	++	-	+	-	-	++	-	-	++	++	++	++	++
69	++	-	+	-	-	++	-	-	++	++	++	++	++
70	++	-	++	+	+	++	++	-	++	++	++	++	++
71	++	-	++	+	++	++	++	+	++	++	++	++	++
72	++	-	++	+	-	++	+	-	++	++	++	++	++
73	++	-	++	+	+	++	+	-	++	++	++	++	++
74	++	++	++	++	++	++	++	++	++	++	++	++	++
75	++	++	++	++	++	++	++	++	++	++	++	++	++
76	++	-	++	+	+	++	+	++	++	++	++	++	++
77	++	-	++	++	++	++	++	++	++	++	++	++	++
78	++	++	++	++	++	++	++	++	++	++	++	++	++
79	++	++	++	++	++	++	++	++	++	++	++	++	++
80	++	-	++	++	++	++	++	++	++	++	++	++	++
81	++	-	++	++	++	++	++	++	++	++	++	++	++

¹*Eb, Eptatretus burgeri* (hagfish)¹⁴); *Pe, Polypterus endlicheri*¹³); *Sf, Scleropages formosus* (Asian arowana)¹²); *Aj, Anguilla japonica* (Japanese eel)¹⁵); *Cc, Cyprinus carpio* (common carp)²⁴); *Laj, Lates japonicus* (Japanese lates)²²); *On, Oreochromis niloticus* (Nile tilapia)²⁴); *Pt, Parapristipoma trilineatum* (striped grunt)²⁴); *Tj, Trachurus japonicus* (jack-mackerel)²⁵); *Sq, Seriola quinqueradiata* (Japanese amberjack)¹⁷); *Sd, Seriola dumerili* (greater amberjack)²⁵); *Sl, Seriola lalandi* (yellowtail amberjack)²⁵); *Sm, Sebastiscus marmoratus* (marbled rockfish, present report).

 $^2\gamma 1, \gamma$ granule type 1; $\gamma 2, \gamma$ granule type 2; $\gamma 3, \gamma$ granule type 3.

³++, many; +, some; -, not observed.

PN, preparation number (See Table 1).

る。SBB陽性顆粒は形態学的特徴が類似することからβ顆 粒に相当すると思われる。

これまでに、各種魚類の好中球の細胞化学的特徴が調べ られており(Table 6), β顆粒を有する魚種では、本顆粒 がPO陽性であると考えられている^{6-12, 15-17, 19-25)}。カサゴに おいてもβ顆粒がPO陽性であると推測された。PO活性の 局在部位の違いから、真骨魚類のⅢ群はⅢ-A群(ノーザ ンパイク, ブルーギル, スズキ, ヒラスズキ, メジナ, ヒ

ラメ,マコガレイ,マツカワ)とⅢ-B群(アユ,ボラ, メナダ、マハタ)に細分されており、前者ではPO活性は β顆粒に^{6-8, 10, 11, 23)},後者ではPO活性がβ顆粒のみならず 核にも検出されている^{8, 19-21)}。カサゴの好中球の核はPO陰 性であった。

アフリカハイギョとコイを除く魚類の好中球にY小体が 観察されている3-17,19-25)。コイにおいても、病原細菌 Aeromonas hydrophilaに人為感染させることで、本小体を

T 11 0	- ·	C . 1 . 1		c . 1.11	<i>.</i> .	C 1 ·
Table 6.	Comparison	n of cytochemical	characteristics	of neutrophils	from various	fish species

	Fish and type of cytoplasmic granule ²													
Test1	Eb	Pa	Pe	Sf	Aj	Cc	Pla	El	Мс					
	γ1	Р	α1, α2, γ2	α2, β, γ1	α2, β, γ2	α2, β, γ2	β	β	β					
PAS	+(H, G)	+(P)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)					
PAS-αA	-	+(P)	-	-	-	-	-	-	±(H)					
AB pH1.0	-	-	-	-	-	-	-	-	-					
AB pH2.5	-	-	-	-	-	-	-	-	-					
ТВ	+(N, Y)	+(N, P)	+(N, Y)	+(N, Y)	+(N, Y)	+(N)	+(N, Y)	+(N, Y)	+(H, N, Y)					
SBB	-	-	+(α1)	+(G)	+(G)	-	-	+(G)	+(H, G)					
SШ	-	_	-	_	-	-	-	-	-					
ORO	-	_	-	_	-	-	-	-	-					
AlP	-	_	+(α1)	_	-	-	-	-	-					
AcP	-	+(P)	+(α1)	-	+(γ2)	+(G)	-	+(β)	+(G)					
β-Glu	-	-	+(α1)	-	+(G)	+(G)	-	+(G)	+(G)					
α-NAE	-	+(P)	+(α1)	+(G)	+(γ2)	-	-	+(G)	+(H, G)					
α-NBE	+(y1)	+(P)	+(α1)	+(G)	+(γ2)	+(G)	-	+(G)	-					
NASDCAE	-	+(P)	+(α1)	+(γ1)	+(G)	+(G)	-	+(G)	+(G)					
PO	-	-	-	+(β)	+(β)	+(β)	$+(N, \beta)$	+(β)	$+(N, \beta)$					

¹PAS, periodic acid Schiff reaction; PAS-uA, PAS after a-amylase digestion; AB, alcian blue; TB, toluidine blue; SBB, sudan black B; SIE, sudan II; ORO, oil red O, AIP, alkaline phosphatase; AcP, acid phosphatase; β-Glu, β-glucronidase; a-NAE, a-naphtyl acetate esterase; a-NBE, a-naphtyl butyrate esterase; NASDCAE, naphtyl abutyrate esterase; NASDCAE, naphtyl butyrate esterase; NASDCAE, naphtyl butyraterase esterase; NASDCAE, naphtyl butyraterase; NASDCAE, naphtyl butyraterase; NASDCAE, naphtyl butyraterase; NASDCAE, naphtyl butyraterase; NASDCAE, naphtyl butyra

Table	6.	Cont.	1
-------	----	-------	---

				Fish and	type of cytoplasmic	c granule ²			
Test ¹	Ch	Laj	Lm	Lj, Ll	Es	On	Pt	Tj	Sq
	β	β, γ1	β	β	β	α2, β, γ1	α2, β, γ2	α2, β, γ1	α2, β, γ2
PAS	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)
PAS-αA	±(H)	-	-	-	+(H)	-	-	-	-
AB pH1.0	-	-	-	-	-	-	-	-	-
AB pH2.5	-	-	-	-	-	-	-	-	-
TB	+(H, N, Y)	$+(N,\gamma 1,Y)$	+(N, Y)	+(N, Y)	+(H, N, Y)	$+(N, \gamma 1, Y)$	+(N, Y)	+(N, G, Y)	+(N, Y)
SBB	+(H, G)	$\pm(H, G)$	+(G)	+(G)	+(H, G)	+(G)	-	+(G)	+(β)
SIII	-	-	-	-	-	-	-	-	-
ORO	-	-	-	-	-	-	-	-	-
AlP	-	$+(H, \gamma 1)$	-	-	+(H, G)	-	-	-	+(β)
AcP	+(G)	+(G)	-	+(G)	+(G)	+(α)	+(G)	+(G)	+(G)
β-Glu	+(G)	+(G)	-	-	+(G)	+(G)	+(G)	-	-
α-ΝΑΕ	+(H, G)	+(G)	-	+(G)	+(H, G)	+(G)	-	+(G)	+(γ2)
α-NBE	+(H, G)	+(G)	-	-	+(H, G)	+(G)	-	+(G)	-
NASDCAE	+(G)	+(G)	-	+(G)	+(G)	-	-	+(G)	-
PO	$+(N, \beta)$	+(β)	$+(\beta)$	+(β)	$+(N, \beta)$	+(β)	$+(\beta)$	+(β)	+(β)

¹PAS, periodic acid Schiff reaction: PAS-aA, PAS after a-amylase digestion: AB, alcian blue: TB, toluidine blue: SBB, sudan black B: SIII, sudan III: ORO, oil red O: AlP, alkaline phosphatase: AcP, acid phosphatase: β-Glu.

Pros. periodic acto Scimi reactory, Pro- area fare transpace upgestion, PA, actain Universe, 16, pointaine Univ, Spins, Sudain Back, Poin, Sudain Back, Poin, Sudain Back, Poin, Beglinernidise; et NAE, an-aphylic actatic estersas; (NAE) en-aphylic buytrate estersas; (NAE) en-aphylic buytrate; (NAE) en-aphylic buytrate estersas; (NAE) en-aphylic buyt

	Fish and type of cytoplasmic granule ²												
Test ¹	Sd	SI	Gp	Pm	Sm	Py	Vm	Ро	Tr				
	α2, β, γ2	α2, β, γ2	β	α1, β	β, γ3	β	β	β	α2, β				
PAS	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)	+(H, G)				
PAS-αA	-	-	_	-	-	-	-	-	-				
AB pH1.0	_	-	-	-	-	-	-	-	-				
AB pH2.5	-	-	_	-	-	-	-	-	-				
ТВ	+(N, Y)	+(N, Y)	+(N, Y)	+(N, Y)	$+(N, \gamma 3, Y)$	+(N, Y)	+(N, Y)	+(N, Y)	+(N, Y)				
SBB	+(β)	+(G)	+(G)	+(β)	+(β)	-	-	+(G)	+(G)				
SIII	-	-	-	-	-	-	-	-	-				
ORO	-	-	-	-	-	-	-	-	-				
AlP	+(G)	+(β)	+(H, G)	-	+(G)	+(H, G)	-	-	-				
AcP	+(G)	+(G)	+(G)	+(α1)	+(G)	+(G)	+(G)	+(G)	+(G)				
β-Glu	-	-	-	+(G)	-	+(G)	-	-	-				
α-NAE	+(γ2)	+(G)	+(G)	+(α1)	+(G)	+(G)	+(G)	+(G)	+(G)				
α-NBE	-	+(γ2)	-	+(G)	+(γ3)	+(G)	+(G)	-	+(G)				
NASDCAE	-	+(G)	_	+(α1)	+(γ3)	+(G)	+(G)	-	+(G)				
PO	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)	+(β)				

Table 6. Cont. 2

¹PAS, periodic acid Schiff reaction; PAS-aA, PAS after a-amylase digestion; AB, alcian blue; TB, toluidine blue; SBB, sudan black B; SIII, sudan III; ORO, oil red O; AIP, alkaline phosphatase; AcP, acid phosphatase; β-Glu,

β-glucronidase; α-NAE, α-naphtyl acetate esterase; α-NBE, α-naphtyl butyrate esterase; NASDCAE, naphthol AS-D chloroacetate esterase; PO, peroxidase

generations in the generation of the second sec

有する好中球が血液中に出現することが報告されている²⁶⁾。 Y小体を有する魚種では、同小体はTB陽性であると考え られている (Table 6)^{3-17, 19-25)}。また, A. hydrophilaに人 為感染させることで出現したコイのY小体もTB陽性であ る²⁶⁾。本研究の結果、カサゴのY小体もTB陽性であるこ とが明らかとなった。

アカメ, ナイルティラピアおよびマアジではγ顆粒も TB陽性であると報告されている^{22, 24, 25)}。カサゴのγ顆粒 もTB陽性であった。一方, ヌタウナギ, P. endlicheri, アジアアロワナ、ウナギ、コイ、イサキ、ブリ、カンパチ およびヒラマサでは、γ顆粒にTB陽性反応は認められて いない12-15, 17, 24, 25)

本研究の結果, カサゴの好中球にはβ顆粒とγ顆粒が存 在することから、カサゴはⅣ群に属することが明らかと なった。しかし, γ顆粒の染色性が既報の魚種のγ顆粒と は異なることから、カサゴをIV-B群とし、アカメをIV-A 群とすることを提唱する。

文 献

- 1) 近藤昌和, 安本信哉, 高橋幸則: コイ好中球のメイ -グリュンワルド・ギムザ染色性.水大校研報, 50, 109-117 (2002)
- 2) 近藤昌和, 安本信哉, 高橋幸則:コイ好中球のアズー ル顆粒.水大校研報, 51, 17-29 (2002)
- 3) 安本信哉, 近藤昌和, 高橋幸則: テラピア好中球顆

粒のメイ-グリュンワルド・ギムザ染色性.水大校研 報, 51, 79-86 (2003)

- 4) 近藤昌和, 安本信哉, 高橋幸則: イサキ好中球の顆 粒. 水大校研報, 52, 45-48 (2004)
- 5) 近藤昌和,金丸俊介,高橋幸則:メジナの好中球顆 粒. 水大校研報, 52, 67-71 (2004)
- 6) 近藤昌和,柏村直宏,金丸俊介,稲川裕之,高橋幸 則:サンフィッシュ科魚類(オオクチバス、ブルーギ ル)の好中球顆粒.水大校研報, 53, 197-202 (2005)
- 7) 近藤昌和, 金丸俊介, 柏村直宏, 稲川裕之, 高橋幸 則:ヒラメおよびメジナ好中球顆粒の細胞化学的特 徵. 水大校研報, 53, 203-209 (2005)
- 8) 近藤昌和:新琵琶湖産アユ冷水病総合対策緊急研究事 業報告書(細胞内病理態様解析,平成17年度),滋賀 県, 1-15 (+表1, 図1-20), (2006)
- 9)近藤昌和,稲川裕之,池田 至,山元憲一,高橋幸 則:トラフグ好中球の形態学的および細胞化学的特 徵. 水大校研報, 55, 133-139 (2007)
- 10) 近藤昌和,稲川裕之,高橋幸則:スズキ科魚類(スズ キ, ヒラスズキ, タイリクスズキ)の好中球の形態学 的および細胞化学的特徴.水大校研報, 55. 141-147 (2007)
- 11) 近藤昌和, 高橋幸則, 山元憲一: ノーザンパイク好中 球の形態学的および細胞化学的特徴.水大校研報. 56, 317-321 (2008)
- 12) 近藤昌和,高橋幸則:アジアアロワナの好中球顆粒.

水大校研報, 57, 219-226 (2009)

- 13)近藤昌和,高橋幸則:ポリプテルス好中球の形態学的お よび細胞化学的特徴.水大校研報,57,283-297 (2009)
- 14)近藤昌和,高橋幸則:ヌタウナギ好中球の形態学的および細胞化学的特徴.水大校研報,57,299-308 (2009)
- 15)近藤昌和,高橋幸則:ウナギ好中球の形態学的および 細胞化学的特徴.水大校研報,58,1-13 (2009)
- 16)近藤昌和,坂口隆亮,金丸俊介,柏村直宏,高橋幸
 則:マダイ好中球の形態学的および細胞化学的特徴.
 水大校研報,58,15-22 (2009)
- 17)近藤昌和,坂口隆亮,金丸俊介,柏村直宏,高橋幸
 則:ブリの好中球の形態学的および細胞化学的特徴.
 水大校研報,58,101-111 (2009)
- 近藤昌和,高橋幸則:アフリカハイギョProtopterus annectens好中球の形態学的および細胞化学的特徴. 水大校研報,58,207-216 (2010)
- 19)近藤昌和,近藤啓太,高橋幸則:マハタ白血球の形態
 学的および細胞化学的特徴.水産増殖,58,363-371
 (2010)
- 近藤昌和,林 裕之,高橋幸則:ボラの白血球の形 態学的および細胞化学的特徴.水大校研報,59,163-

 $171\ (2011)$

- 21)近藤昌和,林 裕之,高橋幸則:メナダの白血球の形
 態学的および細胞化学的特徴.水大校研報,59,173-182 (2011)
- 22) 近藤昌和,安本信哉,高橋幸則:アカメ好中球の形態
 学的および細胞化学的特徴.水大校研報,60,85-93 (2012)
- 23)近藤昌和,安本信哉,高橋幸則:カレイ類(マコガレイ,マツカワ)の好中球の形態学的および細胞化学的特徴.水大校研報,61,43-49 (2012)
- 24) 近藤昌和,安本信哉,大野美和,高橋幸則:コイ,ナ イルティラピアおよびイサキの好中球顆粒.水大校研 報,61,51-64 (2012)
- 25)近藤昌和,安本信哉,秋吉佑樹,高橋幸則:アジ科魚類(マアジ,カンパチ,ヒラマサ)の好中球の形態 学的および細胞化学的特徴.水大校研報,61,87-101 (2013)
- 26)近藤昌和,高橋幸則:病原細菌Aeromonas hydrophila
 に感染したコイの好中球の安本小体.水大校研報,
 56,323-327 (2008)